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ABSTRACT

A wealth of new hierarchical compile strategies have become available in the last few years. This
paper will compare area, speed, and compile time for several large designs using a variety of
hierarchical compile strategies: top-down compile, top-down simple compile, bottom-up with
default constraints, bottom-up with hand-crafted constraints, and ACS (Automated Chip
Synthesis).



1.0 Introduction

Synthesis of large hierarchical designs has traditionally been done in a bottom-up manner: leaf
modules are compiled, and then glued together with no further compilation. Top-down
compilation was generally not an option due to capacity restrictions in Design Compiler.

However the capabilities of Design Compiler have grown dramatically in recent years, and several
new synthesis techniques have become available. This paper compares these new techniques with
the old traditional compile strategies.

Some1 might argue that this doesn’t matter because soon we will all be using Physical Compiler. I
say not so fast, because:

• the features of Physical Compiler might not be needed for your (relatively) small design or for
your (comparatively) slow technology

• Physical Compiler might not be supported by your silicon vendor’s flow

• even if it is supported by your vendor, you might be required to provide a traditional netlist to

the vendor who runs Physical Compiler themselves in gates-to-gates mode2

• Physical Compiler is really only useful once you have almost all your code, and a floorplan

• Physical Compiler is expensive!3

2.0 Example design

The picoJava-II core was chosen as a good evaluation design. It’s freely available and large
enough to be interesting.

The picoJava-II core is a hardware implementation of the Java virtual machine instruction set.
Designed by Sun Microsystems, the core is targeted for emerging, networked, embedded
applications such as:

• Internet chip for network appliances

• Advanced cellular phone

• Traditional embedded products

• Global positioning systems

• Network computers

1. For example, your local Synopsys sales guy.
2. Exercise for the reader: in such a DC -> PC flow, what wireload model should you use in DC?
3. Or Design Compiler is cheap, depending on how you look at it.
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The picoJava-II core consists of seven major units:

• Integer Unit (IU)

• Floating Point Unit (FPU)

• Instruction Cache Unit (ICU)

• Data Cache Unit (DCU)

• Stack Management Unit (SMU)

• Bus Interface Unit (BIU)

• Powerdown, Clock, Reset, and Scan Unit (PCSU)

The BIU is independent of the other units and was not included as part of this evaluation.

The Verilog source code, synthesis scripts, and constraint files are distributed under the
Sun Community Source License program as download version “picoJava-II v2.0”. For more
information see http://www.sun.com/microelectronics/communitysource/picojava

2.1 Modifications to the distribution

The source code as distributed by Sun expects several macrocells to be used: SRAMS to
implement the caches, ROMs for FPU microcode, and a register file. Where possible these
macrocells were replaced with functionally-equivalent synthesizable code (ROMs and register

file) and in all other cases (SRAMs) were replaced with non-functional4 but synthesizable code.

The result is 60,000 lines of purely synthesizable Verilog code. The design has about 150k gates,
7000 flops, a single clock, no latches, no gated clocks, and no multicycle paths. It is not a
functional picoJava processor, but is an ideal vehicle for EDA tool evaluation.

A top-level constraint file was generated based on Sun’s top-level constraint file.

A clock period of 5ns was used.

2.2 Library modules

The source code as distributed by Sun has a large number of library modules (e.g. flops, muxes,
datapath elements) which are intended to be precompiled prior to the main chip synthesis. Sun
provides scripts to perform this compilation after which these small designs are marked
dont_touch. These scripts were only used for the baseline strategy; for all other strategies
these small modules were ungrouped prior to beginning synthesis, resulting in a synthesis
hierarchy identical to that intended by the Sun designers.

4. “Non-functional” means it doesn’t function as an SRAM. Each SRAM is replaced by synthesizable
Verilog code that implements flops on all input ports, flops on all output ports, and XOR gates in
between.
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3.0 Software and hardware

All experiments were run with Design Compiler 2000.05-1 on a variety of SPARC machines. All
CPU times in this report are normalized to a 450MHz UltraSPARC II.

The synthesis library used was IBM’s SA-27 Standard Cell library v12.0, an 0.16µ technology.
However similar results have been seen with other synthesis libraries from other vendors. The
operating condition was T100_V165_Pwc and the wireload model used for all designs in all
synthesis runs was 50KCELLS_6LM. This wireload model is optimistic (especially for the larger
designs) however it was chosen such that the baseline strategy compile scripts could run with their
target 5ns clock period.

4.0 Compile strategies

4.1 Baseline

This strategy used Sun’s scripts and constraints provided in the picoJava-II release kit. A few bug
fixes were applied, and additional scripts were created to handle the synthetic macrocells.

This baseline strategy uses a modified bottom-up approach. Not every module is compiled
individually, rather a top-down compile is done at critical points in the hierarchy. The resulting
compiled designs are marked dont_touch as you move up the hierarchy. The small library
modules were compiled using Sun’s scripts (see section 2.2 “Library modules” on page 3).

4.2 Default

The default strategy is a classic overconstraining leaf module bottom-up compile strategy [1][2].

The hierarchy is traversed bottom-up. Every leaf module is compiled and then marked
dont_touch. Modules that contain only interconnect (i.e. all logic below has already been
synthesized) do not invoke compile.

Every module uses the same default script and constraint file (hence the name). A typical 2-input
NAND gate is used to set_driving_cell on each input port, and reasonable loads are put on
each port (both input and output). Four types of timing paths must be properly constrained:

• Flop to flop (clock period)

• Input to flop (set_input_delay and clock period)

• Flop to output (set_output_delay and clock period)

• Input to output combinatorial or Mealy path (set_input_delay and
set_output_delay using virtual input and output clocks)
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The timing budget assumes a single Mealy module in between the flops:

The Tcl timing constraints look like this:

set PERIOD 5.0

# overconstrain by 20%
set default_clock_period [expr $PERIOD * 0.80]

# eighths = 1/8 of clock period
set eighths [expr $default_clock_period / 8.0]

# constrain combinational Mealy paths to 1/2 of period
create_clock -period $default_clock_period -name comb_virtual_clk
set_input_delay  [expr 1 * $eighths] -clock comb_virtual_clk [all_inputs]
set_output_delay [expr 3 * $eighths] -clock comb_virtual_clk [all_outputs]

# constrain flop -> flop path
create_clock -period $default_clock_period clk

# constrain input -> flop path to 3/8 of period
create_clock -period $default_clock_period -name io_virtual_clk
set_input_delay  [expr 5 * $eighths] -clock io_virtual_clk -add_delay [all_inputs]

# constrain flop -> output path to 1/8 of period
set_output_delay [expr 7 * $eighths] -clock io_virtual_clk -add_delay [all_outputs]

set_false_path -from [find clock io_virtual_clk]   -to [find clock io_virtual_clk]
set_false_path -from [find clock comb_virtual_clk] -to [find clock clk]
set_false_path -from [find clock clk]              -to [find clock comb_virtual_clk]
set_false_path -from [find clock io_virtual_clk]   -to [find clock comb_virtual_clk]
set_false_path -from [find clock comb_virtual_clk] -to [find clock io_virtual_clk]

remove_input_delay [find port "clk"]

Input
Signal

Module 1

IL OL

clk

Module 2

IL OL

clk

CL

1/8 1/2 3/8

Input delay 5/8

Output delay 7/8

OL:  Output forming Logic
IL:  Input forming Logic
CL:  Combinatorial Logic
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Only designs with unmapped cells actually invoke compile:

if {[filter [find cell] "@is_mapped==false"] != {}} {
compile
}

A common modification to this strategy is to follow up the normal compile with an
ungroup -all -flatten to remove any inferred DesignWare components and then a
compile -incremental to clean things up. Note that any previously compiled subdesigns
are marked dont_touch and thus will not be ungrouped. Another modification would be to run
compile -top on designs which have all cells mapped.

4.3 Hierarchical

The hierarchical strategy applies top-level constraints and performs a top-level compile:

  uniquify
  compile

4.4 Simple

The simple strategy applies top-level constraints and performs a top-level compile in simple
compile mode:

  set_simple_compile_mode true -verbose
  compile

The simple compile mode disables certain timing-driven optimizations to enable faster runtimes
during compile. This mode is intended for designs that easily meet timing requirements.

The simple compile mode also configures the compile command to run on non-uniquified designs
so that multiple instantiated designs are mapped only once. This speeds up the compile process
for a design with multiple instances by compiling only one instance of the design and using that
mapped design for the other instances. In effect a bottom-up compile is performed, without
having to create the dependencies manually and determine the order of compilation.

At the end of optimization, the design is automatically uniquified and an incremental compile is
performed.

4.5 ACS pass0

The pass0 strategy uses Automated Chip Synthesis (ACS). This is the typical ACS first pass with
RTL sources and using RTL budgeting (top-down environment propagation) to create partition
constraints. ACS partitions were selected based on Sun’s synthesis scripts (i.e. the partitions are
the same points in the hierarchy where the baseline scripts perform a compile). There are 19
partitions.
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4.6 ACS pass1

The pass1 strategy uses the gate-level netlist results from ACS pass0 as a starting point for the
acs_refine_design command. First the design is rebudgeted to generate new partition
constraints and then an incremental compile is performed on each partition.

  acs_refine_design \
    -source pass0 \
    -dest pass1 \
    -prepare_only cpu

4.7 ACS pass2

The pass2 strategy uses the gate-level netlist results from ACS pass0 as a starting point for the
acs_recompile_design command. First the pass0 netlist is rebudgeted to generate new
partition constraints and then a full compile is performed from the original RTL sources.

  acs_recompile_design \
    -budget_source pass0 \
    -source pass0 \
    -dest pass2 \
    -prepare_only cpu

Despite the name, this strategy does not depend on the results of pass1.

5.0 Results

Table 1 shows the quality of results (QoR) from report_qor using the baseline strategy.

A more in-depth analysis of timing uses the slack ratio defined for a given path as

.

Table 1: Baseline timing QoR

baseline

Levels of logic 47

Critical path length 6.44

Critical path slack (WNS) -1.76

Total negative slack (TNS) -1312.22

Number of violating paths 2324

slack ratio slack
required delay
----------------------------------=
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The command report_timing -nosplit -path end gives all the necessary
information, one line per endpoint. Reference [3] gives more information on slack ratios and slack
ratio plots.

Plotting the cumulative number of paths that have less than a given slack ratio gives a
slack ratio percentage plot. Figure 2 shows such a plot with the baseline results.

Figure 2.  Baseline slack ratio percentage plot

The leftmost point on the curve shows a slack ratio of -0.35 corresponding to the worst negative
slack (WNS) of -1.76ns and a period of 5.0ns:

Total negative slack (TNS) corresponds roughly to the area under the curve and left of the  axis.

Notice that about one-third of the paths do not meet timing, i.e. they have a negative slack and
therefore a negative slack ratio.

We can use this technique to compare the different compile strategies. All paths in each design are
represented in this compact graphical format.
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Table 3 shows the QoR of the baseline and default strategies.

A slack ratio percentage plot shows the differences more dramatically.

Figure 4.  Baseline and default slack ratio percentage plots

The plot clearly shows the poorer WNS for the default case, and also the larger TNS (area under
the curve and left of the  axis).

Table 3: Baseline and default timing QoR

baseline default

Levels of logic 47 50

Critical path length 6.44 7.00

Critical path slack (WNS) -1.76 -2.21

Total negative slack (TNS) -1312.22 -1799.55

Number of violating paths 2324 2812
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Now consider the hierarchical strategy.

Figure 6.  Baseline, default, and hierarchical slack ratio percentage plots

The much improved WNS for the hierarchical strategy is clear, as is the vastly improved TNS.

A perfect synthesis tool would have a slack ratio percentage plot that is a step function at the
axis, i.e. all paths have zero slack. Thus all paths exactly meet their required timing; any positive
slack indicates that area is being wasted to make a path faster than it needs to be.

The hierarchical strategy is closer to the ideal. In particular note that in the region of positive slack
ratio to the right of the axis, the baseline and especially the default curve are farther to the right
of the hierarchical curve. This indicates that these strategies are wasting effort making non-critical
paths faster.

Table 5: Baseline, default, and hierarchical timing QoR

baseline default hierarchical

Levels of logic 47 50 36

Critical path length 6.44 7.00 5.40

Critical path slack (WNS) -1.76 -2.21 -0.68

Total negative slack (TNS) -1312.22 -1799.55 -388.76

Number of violating paths 2324 2812 1790
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This wasted effort is clear from Figure 7 which compares the netlist area of each strategy.

Figure 7.  Area results

The noncombinational area is similar for all three, since they all have nearly the same number of
flip-flops. However the combinational area of the baseline strategy is almost twice that of the
hierarchical!
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Now consider the simple compile strategy. Although the WNS is comparable to the baseline
strategy, the TNS is much worse.

Figure 9.  Slack ratio percentage plot

Table 8: Timing QoR

baseline default hierarchical simple

Levels of logic 47 50 36 48

Critical path length 6.44 7.00 5.40 6.59

Critical path slack (WNS) -1.76 -2.21 -0.68 -1.81

Total negative slack (TNS) -1312.22 -1799.55 -388.76 -2017.98

Number of violating paths 2324 2812 1790 2875
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However the area is even smaller than hierarchical strategy:

Figure 10.  Area results

Finally, here are the results from ACS.

Table 11: Timing QoR

baseline default hier. simple
ACS
pass0

ACS
pass1

ACS
pass2

evels of logic 47 50 36 48 40 37 37

ritical path length 6.44 7.00 5.40 6.59 5.59 5.59 5.57

ritical path slack (WNS) -1.76 -2.21 -0.68 -1.81 -0.75 -0.77 -0.75

otal negative slack (TNS) -1312.22 -1799.55 -388.76 -2017.98 -855.08 -381.16 -250.43

umber of violating paths 2324 2812 1790 2875 2725 1417 788
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The timing for all three ACS strategies is very good. Results are similar to the hierarchical
strategy.

Figure 12.  ACS pass0, pass1, pass2 slack ratio percentage plot
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Pass1 area is even smaller than the simple strategy.

Figure 13.  Area results

Now consider the CPU resources used for each strategy.

The hierarchical compile uses considerable memory. Simple compile is very quick. The default
and baseline cases take quite a bit of time when run sequentially, but if you have sufficient
licenses and machines many of the jobs can be run in parallel for a significant reduction in wall
clock time.

There are two components to each ACS run. First the setup which includes budgeting and the
generation of scripts, constraints, and Makefile. Secondly the compile is the actual make-driven
bottom-up compilation. Like the default and baseline strategies, the ACS compile step will benefit

Table 14: CPU resources used

baseline default hier. simple
ACS
pass0

ACS
pass1

ACS
pass2

Total CPU time (hours) 12.63 8.07 8.54 3.17 11.19 5.54 7.77

Number of jobs 21 192 1 1 20 20 20

Max memory usage (Mbytes) 640 273 1087 374 783 310 456

Max swap usage (Mbytes) 663 294 1108 395 804 340 559
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from parallel runs on multiple machines. However the setup is a single job and must be completed
before compilation can begin. Table 15 shows a breakdown of CPU resources needed for the two
ACS steps. The pass0 setup step is by far the most compute-intensive, both in CPU time and
memory. Apparently the pass0 RTL budgeting requires much more computation than the gate-
level netlist budgeting in pass1 and pass2.

Table 15: CPU resources used for ACS strategies

ACS pass0 ACS pass1 ACS pass2

setup compile setup compile setup compile

Total CPU time (hours) 3.67 7.52 1.20 4.34 2.02 5.75

Number of jobs 1 19 1 19 1 19

Max memory usage (Mbytes) 783 370 310 259 456 371

Max swap usage (Mbytes) 804 393 340 281 559 388
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Table 16 summarizes all the results for the different strategies.

Both the default and baseline strategies have some nets with design rule violations
(max_capacitance, max_fanout, or max_transition). This is because neither strategy performs a
top-level compile which would clean up these problems.

Table 16: Summary of results from different compile strategies

baseline default hier. simple
ACS
pass0

ACS
pass1

ACS
pass2

vels of logic 47 50 36 48 40 37 37

itical path length 6.44 7.00 5.40 6.59 5.59 5.59 5.57

itical path slack (WNS) -1.76 -2.21 -0.68 -1.81 -0.75 -0.77 -0.75

tal negative slack (TNS) -1312.22 -1799.55 -388.76 -2017.98 -855.08 -381.16 -250.4

mber of violating paths 2324 2812 1790 2875 2725 1417 788

tal area (kgates) 256 209 150 130 132 121 133

Combinational area 220 164 116 94 97 87 97

Noncombinational area 36 45 35 36 36 34 36

af cell count 139949 87606 84393 65545 77308 70537 78184

mber of nets 139973 87630 84445 65597 77332 70561 78208

ts with violations 142 9 0 0 0 0 0

tal CPU time (hours) 12.63 8.07 8.54 3.17 11.19 5.54 7.77

mber of jobs 21 192 1 1 20 20 20

ax memory usage (Mbytes) 640 273 1087 374 783 310 456

ax swap usage (Mbytes) 663 294 1108 395 804 340 559
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6.0 Results from larger design: cpu_X2

How do the various compile strategies behave for larger designs?

We can create a larger synthetic design by first duplicating all Verilog source files and adding a
suffix _N0 to every module name. Make a second set of files, but this time use the suffix _N1.
Now create a top-level module cpu_X2 that has the same ports as the original picoJava-II core,
but instantiates our two new synthetic designs cpu_N0 and cpu_N1.

Figure 17.  Synthetic design twice as large as the original

The top-level inputs connect to the inputs of the first subdesign cpu_N0 and the top-level outputs
connect to the outputs of the second subdesign cpu_N1. Furthermore, the outputs of cpu_N0
feed the inputs of cpu_N1. If there are too many outputs we can combine some through 2- and 3-
input XOR gates. Clock and reset signals are connected in common to all subdesigns.

Since the top-level input and output ports are the same as the original picoJava-II core, the
original top-level constraint files can still be used. The internal connections are chosen carefully
such that the critical path of the new cpu_X2 does not cross from one subdesign to another.

in inout outin out

cpu_X2

cpu_N0 cpu_N1

clk

reset

clk reset clk reset
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Now we have a synthetic design twice as large as the original, but which should have identical
timing. The hand-crafted baseline scripts cannot be used, but all other compile strategies were
evaluated. Table 18 summarizes the results.

Table 18: Summary of results from different compile strategies for cpu_X2

cpu_X2 default hier. simple
ACS
pass0

ACS
pass1

ACS
pass2

Levels of logic 50 55 50 41 41 36

Critical path length 7.00 6.19 6.80 5.55 5.58 5.51

Critical path slack (WNS) -2.21 -1.37 -1.98 -0.73 -0.76 -0.69

Total negative slack (TNS) -3599.69 -1110.13 -4722.20 -1835.86 -641.06 -606.07

Number of violating paths 5589 2950 5864 5596 2009 1886

Total area (kgates) 418 303 257 265 243 265

Combinational area 329 234 186 194 176 195

Noncombinational area 90 70 71 70 67 70

Leaf cell count 175292 168767 129641 155614 142615 153322

Number of nets 175290 168767 129695 155612 142613 153320

Nets with violations 18 0 0 0 0 0

Total CPU time (hours) 15.80 16.65 5.43 22.99 20.85 16.43

Number of jobs 385 1 1 38 38 38

Max memory usage (Mbytes) 487 1981 583 1502 564 843

Max swap usage (Mbytes) 513 2002 602 1524 593 873
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Table 19 shows a breakdown of the CPU resources for each ACS step. Again the pass0 setup with
RTL budgeting requires the most memory and CPU time.

Figure 20 graphically shows the area results for the cpu_X2 design. Similar to the original results,
the default strategy has much larger area compared to the others. Again, ACS pass1 is the
smallest.

Figure 20.  Area results for cpu_X2

Table 19: CPU resources used for ACS strategies for cpu_X2

cpu_X2
ACS pass0 ACS pass1 ACS pass2

setup compile setup compile setup compile

Total CPU time (hours) 7.81 15.18 3.05 17.80 2.62 13.81

Number of jobs 1 37 1 37 1 37

Max memory usage (Mbytes) 1502 470 564 465 843 476

Max swap usage (Mbytes) 1524 498 593 489 873 500
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Here are slack ratio percentage plots showing the cpu_X2 results. Again we see the advantages of
the hierarchical and ACS strategies.

Figure 21.  Slack ratio percentage plot for cpu_X2

Figure 22.  Slack ratio percentage plot for cpu_X2
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7.0 Results from larger design: cpu_X5

In a similar manner even larger synthetic designs can easily be made. Table 23 shows results for a
synthetic design with five copies of the picoJava-II core. Note that the hierarchical strategy could
not be completed; it exceeded the available memory in Design Compiler.

Table 23: Summary of results from different compile strategies for cpu_X5

cpu_X5 default hier. simple
ACS
pass0

ACS
pass1

ACS
pass2

Levels of logic 50 51 42 38 38

Critical path length 7.00 6.77 5.64 5.57 5.61

Critical path slack (WNS) -2.21 -1.95 -0.84 -0.77 -0.80

Total negative slack (TNS) -8997.42 -12173.09 -5144.99 -1728.80 -1527.07

Number of violating paths 13920 14671 13978 5339 4781

Total area (kgates) 1046 638 654 600 658

Combinational area 822 461 480 434 482

Noncombinational area 224 177 174 166 176

Leaf cell count 438347 322274 387066 353575 388603

Number of nets 438261 322328 386980 353489 388517

Nets with violations 45 0 0 0 0

Total CPU time (hours) 38.67 20.39 57.62 34.30 41.03

Number of jobs 958 1 89 89 89

Max memory usage (Mbytes) 1142 >3877 1365 3294 1117 1885

Max swap usage (Mbytes) 1166 1386 3675 1357 2049
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Table 24 shows a breakdown of the CPU resources for each ACS step. Again the pass0 setup with
RTL budgeting requires the most memory and CPU time.

Again, the simple and ACS results are dramatically smaller than the default strategy.

Figure 25.  Area results for cpu_X5

Table 24: CPU resources used for ACS strategies for cpu_X5

cpu_X5
ACS pass0 ACS pass1 ACS pass2

setup compile setup compile setup compile

Total CPU time (hours) 19.86 37.76 9.80 24.50 8.68 32.35

Number of jobs 1 88 1 88 1 88

Max memory usage (Mbytes) 3294 1094 1117 1074 1885 921

Max swap usage (Mbytes) 3675 1118 1375 1098 2049 1131
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However the default TNS is better than simple. The ACS strategies are the fastest in both WNS
and TNS.

Figure 26.  Slack ratio percentage plot for cpu_X5

Figure 27.  Slack ratio percentage plot for cpu_X5
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8.0 Results from larger design: cpu_X10

Finally Table 28 gives results for a synthetic design comprising ten picoJava-II cores. This design
has well over one million gates. The hierarchical strategy was not attempted, since there was
insufficient capacity even for the cpu_X5 design. ACS pass0 could not be completed; it exceeded
Design Compiler’s available memory during the initial RTL budgeting step.

Table 28: Summary of results from different compile strategies for cpu_X10

cpu_X10 default simple
ACS
pass0

Levels of logic 50 50

Critical path length 7.00 6.90

Critical path slack (WNS) -2.21 -2.10

Total negative slack (TNS) -17993.23 -30403.93

Number of violating paths 27805 30923

Total area (kgates) 2092 1276

Combinational area 1644 918

Noncombinational area 448 358

Leaf cell count 876767 642663

Number of nets 876541 642717

Nets with violations 90 0

Total CPU time (hours) 77.29 60.97

Number of jobs 1913 1

Max memory usage (Mbytes) 1760 2747 >3877

Max swap usage (Mbytes) 1783 2775
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The default strategy design has considerably more area, over 2 million gates compared to less
than 1.3 million from the simple strategy.

Figure 29.  Area results for cpu_X10
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However the much larger TNS for the simple strategy is clear from Figure 30.

Figure 30.  Slack ratio percentage plot for cpu_X10
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9.0 Observations and comments on each compile strategy

9.1 Baseline

In essence the baseline strategy is a bottom-up compile with custom scripts and hand-budgeted
constraints for each design. As designs get larger this strategy becomes unwieldy. Hand-made
budgets are extremely difficult to accurately build and maintain, with the result that many non-
critical paths are overconstrained while the true critical path is non-optimal.

Although using a Makefile allows quick recompiles on minor RTL changes, it is difficult to
manually keep the dependencies correct as the design hierarchy is modified. This leads to
uncertainty about whether the netlist corresponds to the correct sources.

9.2 Default

In addition to contrasting different strategies for a given size design, slack ratio percentage plots
are useful for comparing the results for a single strategy on different size designs. This works
because although the larger designs have many more paths, the percentages should stay the same.
Figure 31 shows that the default strategy scales nicely as the design size increases.

Figure 31.  Slack ratio percentage plots for different size designs using default strategy
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The CPU resources scale almost linearly. This is not surprising considering that the X2 design
contains two copies of each module from the X1 design, thus roughly twice as many compile jobs
are needed. The memory requirements are determined by the final top-level compile step. For
example, only one of the X10 jobs uses more than 273Mbytes of memory.

Table 32: CPU resources used by default strategy for different size designs

default strategy X1 X2 X5 X10

Total CPU time (hours) 8.07 15.80 38.67 77.29

Number of jobs 192 385 958 1913

Max memory usage (Mbytes) 273 487 1142 1760

Max swap usage (Mbytes) 294 513 1166 1783
SNUG San Jose 2001 29 A Comparison of Hierarchical Compile Strategies



Figure 33 shows the area results for all default strategy compiles. The location on the  axis
corresponds to the size of the synthetic design (i.e. the number of cpu subdesigns). Notice how the
area scales almost linearly with the size.

Figure 33.  Area for different size designs using default strategy

The default strategy (like all bottom-up strategies) scales very well. However it is difficult to find
one set of constraints that works well for all modules in the design, especially if the design has
multiple clocks or other complex issues. As with the custom baseline strategy, the result is that
many non-critical paths are overconstrained while the true critical path is non-optimal. Area
usually suffers.

One technique is to start with the same default script and constraint for each module, and then
modify each by hand to “tweak” the budgets. This allows for some improvement, but often an
enormous amount of manual effort is expended with little gain in quality of results.

Another possibility is to take the results of default and use that netlist as the input for automatic
budgeting (e.g. using ACS). This might avoid the capacity limitations of RTL budgeting in ACS.
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9.3 Hierarchical

In contrast to the default strategy, timing results for the hierarchical strategy are affected by design
size. TNS and WNS degrade as the design size is increased.

Figure 34.  Slack ratio percentage plots for different size designs using hierarchical strategy

The required CPU resources appear to scale linearly as well.

The hierarchical strategy can handle a reasonably sized design, however the CPU resources are
considerable.

Table 35: CPU resources used by hierarchical strategy for different size designs

hierarchical strategy X1 X2 X5

Total CPU time (hours) 8.54 16.65

Number of jobs 1 1

Max memory usage (Mbytes) 1087 1981 >3877

Max swap usage (Mbytes) 1108 2002
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9.4 Simple

Like the hierarchical strategy, the simple strategy shows timing degradation as the design size
increases.

Figure 36.  Slack ratio percentage plots for different size designs using simple strategy
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The simple strategy also scales linearly with area.

Figure 37.  Area for different size designs using simple strategy

Although the memory requirements are moderate, the CPU time required is increasing
dramatically.

Table 38: CPU resources used by simple strategy for different size designs

simple strategy X1 X2 X5 X10

Total CPU time (hours) 3.17 5.43 20.39 60.97

Number of jobs 1 1 1 1

Max memory usage (Mbytes) 374 583 1365 2747
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Recall that the simple strategy finishes up with a top-level uniquify and incremental compile. The
majority of the overall CPU time is used during the area recovery phase of this final incremental
compile. For example, during the X10 compile almost two-thirds of the time (39 hours) is spent
doing area recovery! During this area recovery step, the WNS reduces from 2.33 to just 2.10,
while an amazing 521k gates are removed.

By running simple compile with -area_effort none the compile time would be speeded up
dramatically with minimal impact on timing. This might be useful for a “quick and dirty” first
compile just to see what the timing is like.

Simple compile is a useful strategy for initial compilation of any design. More sophisticated
techniques will certainly give you better results, but the simple compile gives you a good “first
look” at your netlist. The CPU resources are much less than the hierarchical strategy.

Beginning with the Design Compiler 2000.11 release, simple compile mode uses RTL budgeting
to generate more accurate initial constraints for submodules.
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9.5 ACS

The ACS strategies scale very nicely as the design size is increased.

Figure 39.  Slack ratio percentage plots for different size designs using ACS pass0 strategy
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Figure 40.  Slack ratio percentage plots for different size designs using ACS pass1 strategy

Figure 41.  Slack ratio percentage plots for different size designs using ACS pass2 strategy
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Table 42 shows clearly how the resource bottleneck for ACS is the pass0 setup step during which
RTL budgeting is performed.

Currently ACS requires that any small change to the RTL source forces the entire budget be
recomputed. An interesting hybrid approach would be to reuse the old pass0 budgets on new RTL
sources (assuming that the RTL changes do not modify any module ports).

The 2000.11 release of Design Compiler enhances ACS in two ways:

• The new acs_read_hdl command automates the analysis and elaboration of HDL source
code for a design. You will no longer need to specify file names and dependencies.

• An automatic design partitioning capability can now select compile partitions based on size
estimation. This new method of partitioning the design provides a more balanced bottom-up
synthesis and might result in reduced design runtimes.

Any remaining capacity limitations should be addressed when the 64-bit port of Design Compiler
is released.

Automated Chip Synthesis is an extremely powerful and easy-to-use technique. If you have a
large and/or high-speed design you should seriously consider ACS.

10.0 Final comments

False paths and multicycle paths have a tendency to appear in the constraint files and never be
removed. For example, the Sun top-level constraint file marks a dozen false paths. What probably
happened is that during the development of this design, each of these was at one point the “critical
path”. Analysis must have shown that this was in fact a false path, and it was marked accordingly
so as to unmask the true critical path lurking beneath. This is useful only when the false path is
slower than the slowest true path. However now that the design is finished, it turns out that none of
these false paths are that slow! Yet the set_false_path remains in the top-level constraint
file, making the compile slower.

Table 42: CPU resources used by ACS pass0 strategy for different size designs

ACS pass0
X1 X2 X5 X10

setup compile setup compile setup compile setup

Total CPU time (hours) 3.67 7.52 7.81 15.18 19.86 37.76

Number of jobs 1 19 1 37 1 88

Max memory usage (Mbytes) 783 370 1502 470 3294 1094 >3877

Max swap usage (Mbytes) 804 393 1524 498 3675 1118
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Traditional bottom-up strategies have read in the source files using read -format verilog
(or read_verilog in Tcl). This is a problem when parameterized designs are used. A top-level
elaborate avoids this problem, however now you have a problem keeping the source file
dependencies correct. Also a top-level elaborate can require considerable memory. The new
PRESTO HDL reader may provide some help here.

This paper reports on one design with one library and one version of Design Compiler. Similar
results were seen with other synthesis libraries and earlier versions of DC, however don’t expect
to get exactly these results with your design! And don’t expect to see the same resource
limitations either! As always, your mileage may vary.

It will be interesting to run these experimental compiles on new versions of Design Compiler,
especially the forthcoming version with 64-bit addressing.
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