The Human ECO Compiler

Steve Golson

Trilobyte Systems
388 Stearns Street
Carlise MA 01741
Phone: +1.978.369.9669
Fax: +1.978.371.9964
Email: sgolson@trilobyte.com
http://www.trilobyte.com

ABSTRACT

Engineering Change Orders or ECOs are all too prevalent in ASIC design. Unfortunately there are
few toolsthat directly support these “last minute” changesto adesign. Soit’sleft to us humansto
figure out a solution.

This paper will cover the ad hoc solutions that have been developed for implementing ECOs.
Topicsto be covered:

basic definitions: the types of ECOs

where in the flow to make the change

advanced netlist dissection techniques
implementing large ECOs using thousands of gates
equivalence checking: your best friend

back-end issues

why ECOs are really a management problem, and how to deal with it

Revised: March 21, 2004

mailto:sgolson@trilobyte.com
http://www.trilobyte.com

Introduction—What is an ECO?

1.0 Introduction—What isan ECO?

We define an engineering change order or ECO asfollows:

An ECO is a modification made to an automatically-derived representation of a design.
This change is made outside of the normal tool flow.

ECOs are sometimes called an engineering change note (ECN) or just engineering change (EC).

The following are examples of ECOs:

A schematic capture program generates anetlist of TTL components. The netlist isused to lay
out and manufacture a printed circuit board (PCB). The schematic and resulting netlist is then
changed. Rather than building an entirely new PCB, the ECO is applied by cutting traces on
the existing PCB and adding jumper wires (sometimes called “yellow wires,” “white wires,”
or fly wires) [1].

The same TTL netlist is used by an automatic wire-wrap machine to wire up a circuit board.
The ECO is applied by using manual wire-wrap tools to change the connections [2]. Typically
the automatic machine used one color wire (e.g., red) and the manual changes are made with a
different color (e.g., blue) which led to the term “blue wire” for any type of changeto a
design.

An RTL representation of adesign is synthesized to a gate-level netlist. The ECO is applied
by hand-editing the netlist.

An IC gate-level netlist is placed and routed using an automatic tool. The ECO is applied by
hand-editing the placement and/or routing.

We can broadly split ECOs into two categories: functional and non-functional. For example a
functional ECO for an ASIC would require a change to the original RTL. This could be a bug or
an added feature. In contrast, a non-functional ECO for an ASIC would not require a change to

the original RTL design®. Examples include timing fixes, hold fixes, max capacitance violations,
max transition violations, and crosstalk problems.

In this paper we are primarily concerned with functional ECOs for cell-based ASIC design.

1. Itispossible to make non-functional changesto the RTL. This can wreak havoc with flows based on
make, because the RTL file timestamp will change and cause an unnecessary resynthesis.

SNUG San Jose 2004 2 The Human ECO Compiler

Complexity

1.1 Complexity

We can further classify these functional ECOs by how difficult they are to implement. This
“complexity” can be measured on several orthogonal scales. In each case alarger number
indicates higher complexity.

Mask complexity

How many masks are required to make the change? A full set of masksis very expensive, so
requiring a smaller number can save considerable NRE costs. Furthermore partially-processed
wafers can be stored awaiting the new metal masks, which saves fab time for the ECO part.

1. Top-layer metal only. Allows changes to existing die using focused-ion-beam (FIB) milling.
2. Metal-only. No base layers are changed.
3. All layers are changed.

Floorplan complexity

In ahierarchical layout, if only one hierarchical block is changed, then back-end testing and
verification may be skipped for the unchanged blocks. This can save time and money.

1. One hierarchical block hasinternal changes.Top-level wiring and all other blocks are not
affected.

2. Top-level interconnect is changed, but no ports are changed on the blocks.

3. Multiple blocks are changed.

Design complexity

1. Only asingle RTL moduleis changed.

2. Multiple RTL modules are changed.

Combinational logic complexity

1. Existing logic gates are rewired. No new gates are needed.

2. Additional gates (spare cells) are used to implement the change.
Sequential logic complexity

1. Noflopsare changed.
2. Redundant or spare flops are used, but the clock tree and scan chain are unaffected.
3. New flops are required. The clock tree and/or scan chain must be changed.

Size complexity

1. Only one new gate is needed.

2. Between one and 10 new gates are needed.
3. Between 10 and 100 new gates are needed.
4. Morethan 100 new gates are needed.

SNUG San Jose 2004 3 The Human ECO Compiler

Purpose—Why do an ECO?

2.0 Purpose—Why do an ECO?

Consider atypical ASIC flow (Figure 1).

RTL logic _
syntﬁesis ‘)W—V placer

Figure 1. Typical ASC flow

placed&
routed
netlist

placed
netlist

router

Normally when a change is made to the RTL, the entire flow is run again using the new RTL to
generate a completely new placed and routed netlist (Figure 2).

new logic
new
RTL synthesis netlist placer

Figure 2. Typical flow when RTL changes

new
placed
netlist

new

placed&
routed

netlist

router

&

In contrast to implement an ECO we skip over one (or more) of the automated steps (Figure 3).

O
N

old old
RTL placed&
routed
netlist

¢ AN

N

ECO

» placed&
routed
netlist
new N~
RTL

ECO
tool

\ A |

Nl N L

Figure 3. ECO flow skips over some automated steps

SNUG San Jose 2004 4 The Human ECO Compiler

Flow—Who will implement the ECO?

Why do an ECO at all? Why not just run through the entire flow again? The ECO flow has several
advantages:

Shorter fab time. Typically some wafers are saved prior to metallization, which enables a
metal-only fix to be quickly implemented. If the chip has already been fabricated, alow-
complexity ECO could be performed on existing silicon using FIB techniques.

Lower fab cost. Even if fab timewasn’t an issue, having ametal-only fix keeps the mask costs
down. Using previously fabricated base layer wafers saves the cost of new wafer starts.

Shorter design time. Even if fab time and cost were not an issue, running the complete flow
can take an enormous amount of time. A low-complexity ECO allows many steps in the flow
to be skipped.

Lower design cost. There may be additional NRE costs to your vendor to pay for a complete
respin. A simple ECO could be much cheaper.

Less palitical risk. Regardless of the engineering issues, if you've passed a milestone
(synthesis completed, placement done, timing closure) it may be politically easier to tweak the
design with an ECO than admit to “starting over.”

Predictable results. Thisisthe reason that underlies al the others. The normal flow is
unpredictable and chaotic [3]. Small changesto the input cause large differencesin the output.
In contrast, the ECO flow is incremental—the existing design is kept intact as much as
possible [4]6].

3.0 Flow—Who will implement the ECO?

Most modern place and route tools have support for incremental changes (Figure 4). However
they require an input netlist that isvery similar to the original netlist. These tools compare the new
netlist to the old netlist, remove just the modified cells and nets, then place and route the new
cells. The netlist comparison is name-based, consequently the ECO netlist needs to be
syntactically ailmost identical to the original netlist.

O
N

old
RTL placed&
routed
netlist

T

¢ ¢ —
N
Eco o~ incremental |EC(3
, lace & route | —yp{placed&
synthesis netlist P tool routed
netlist

new N~
RTL

Figure 4. ECO flow using incremental place and route

SNUG San Jose 2004 5 The Human ECO Compiler

Flow—Who will implement the ECO?

Thus the big problem is logic synthesis—is there an incremental synthesis methodology that will
maintain as much of the original netlist as possible?

Hereis one such methodology [4] for implementing ECOs in a synthesized netlist:

arwOWdNE

Unfortunately this methodol ogy

Modify the HDL specification and reverify the HDL

Hand-edit the logic change into the gate-level netlist

Check for equivalence between the gate-level and HDL specifications
Iterate until the gate netlist matches the HDL specification

Perform incremental place and route

...requires designers to search for a gate-level solution. In an HDLA methodology, the
logic designer has difficulty matching the HDL specification to the automatically
generated synthesis schematic. The resulting change is not “ correct by construction.”
Often the designer must iterate, searching for solutions and using formal equivalence
checking before converging on alogically correct solution. [4]

Synopsys ECO Compiler was introduced in April 1997 [7][8] as away to overcome these
obstacles. Thistool was developed to enable a correct-by-construction methodology for safe and
reliable implementation of ECOs [4]. The basic ECO Compiler flow is shown in Figure 5.

old new
HDL HDL
Design same Design
Compiler [DC script P compiler
\/—\
T T
old new
netlist netlist
Y Y
user ECO
directives » Compiler

ECO
netlist

Figure 5. Synopsys ECO Compiler flow

SNUG San Jose 2004

6 The Human ECO Compiler

Flow—Who will implement the ECO?

The “ECO Compiler User Guide” [9] summarizes the tool as follows:

ECO Compiler can be used any time in the design cycle to implement logic changes but
generaly isused late in the design cycle. Usually you use ECO Compiler in the post-
layout phase near the end of the design cycle.

ECO Compiler incorporates in a mapped design afunctional change made to its HDL
design description. It does this by incrementally combining the functionally unchanged
portions of the mapped design and implementing the new portions of the modified (new)
HDL. Using ECO Compiler guarantees functional equivalence between the modified HDL
and the netlist created by ECO Compiler that implements the modification.

Use ECO Compiler when you need
* Incremental functional change to the RTL specification
o Stability of synthesis results through incremental functional changes

» Faster place and route after incremental functional changesto the HDL when the
changes are small and localized

» Guarantee of functional equivalence between the modified HDL and the netlist that
implements the modification

The further development of ECO Compiler has lagged [10] and as of version 2001.08 it isno
longer supported [11].

Why did ECO Compiler fail? | suspect there were several reasons™

* Incremental synthesisisavery hard problem. As changes are made to the mainstream Design
Compiler synthesis algorithms, similar changes need to be made to ECO Compiler. This
requires scarce R& D resources.

* No support for physical synthesis. After Physical Compiler was introduced, there were many
requests that incremental synthesis capabilities be added to it [12]-{15]. Again, thiswould
require atremendous R& D investment.

» Lackluster sales. It takes avery enlightened manager to authorize the purchase of atool that is
predicated on the design team making mistakes. Furthermore alarge company would
probably only need a single license of ECO Compiler, in contrast to the many copies of
Design Compiler, PrimeTime, and VCS that are typically needed. Finally some potential
customers may have already developed their own internal ECO methodology and had no use
for another tool.

Asfor other EDA vendors, although some in-house ECO tools have been developed (e.g., LS
Logic[16], IBM [17], and Mitsubishi [18]) none are currently available on the open market.

If there are no logic synthesis tools to help, we must implement our ECOs using the manual
methodology outlined above—which makes us The Human ECO Compiler.

2. Thisis sheer speculation! | have not talked to any Synopsys folks about the fate of ECO Compiler.

SNUG San Jose 2004 7 The Human ECO Compiler

Tools—What you need to implement an ECO

4.0 Tools—What you need to implement an ECO
4.1 Thingstoread

Reviewing the “ECO Compiler User Guide” [9] isagood place to start. This gives a great
discussion about ECO concepts, flows, and commands. ECO Compiler is an unsupported product
so the documentation is no longer on the SOLD CD or SolvNet. You'll have to scrounge an old
SOLD CD (version 2000.11 or earlier) to get it.

There are several excellent SNUG papersthat discuss ECOs. Fox [19] presents a methodology for
using ECO Compiler. Rao [20] shows a novel way to implement and verify gate-level ECOs.
Horgans et a. [21] discusses aformal verification flow for ECOs.

4.2 Software

It iscritical that you have arobust revision control or configuration management systemin

place [22]. You need away to track modifications to RTL sources, synthesis scripts, formal
equival ence scripts, and netlists. Note that anormal (non-ECO) flow might not keep netlists under
revision control, because they are “ derived files.” However as part of an ECO flow we will be
editing and changing netlists, so they become “primary files.” Furthermore we may need to keep
binary files (such as. db files and place-and-route databases) under revision control. Thus you
must have arevision control tool that can reliably handle very large text and binary files.

Most widely used place and route tools (Cadence, Synopsys/Avant!, and in-house tools such as
IBM) support incremental changes to the placed and routed netlist [11]. Study the documentation
for your tool. Review the complexity scalesin Section 1.1 on page 3. What is the most complex
ECO ever implemented by your tool? Ask your EDA application engineer for guidance. If the
back-end is done by your silicon vendor, ask them to describe their ECO flow.

It isimperative that you have aformal verification tool such as Formality from Synopsys. Only
the most trivial ECOs should be attempted unless you have some way to prove equality with the
source RTL [23]. However for very small designsyou can usethe conpar e _desi gn command
in Design Compiler [20].

Bug tracking tools are very useful [24]. Keeping track of all the pending changesis a challenge
that is greatly eased when you have atool for the entire team to use. Also every ECO needs a
name, and the bug tracking number is the obvious name to use.

Your favorite text editor is necessary for editing netlists. Very large netlists can be a challenge for
some editors.

Perl. You must have Perl. Find it, get it, loveit, useit. Having Perl counterbalances the limitations
of many other tools.

SNUG San Jose 2004 8 The Human ECO Compiler

Transistors

4.3 Transistors

Very simple ECOs may be implemented by rewiring existing cells. However for any reasonable
complexity, extra gates will be needed.

If thisisan ECO on a chip that has not yet taped out, then all layers are available, and any needed
gates can be placed in unused areas of the die.

On the other hand, if the chip has already taped out, then a metal-only ECO is needed. To provide
for these sorts of ECOs, spare cells may be included in the design [25][26]. These can be at any
level of thelogical hierarchy and are spread physically throughout the die [19]. Typically amix of
logic cells and flip-flops make up the spare cell package (also called spare gates, bonus gates,
sewing kits, and tool kits). Furthermore some designers may add spare nets [27], spare wiring
channels, spare pads (EC pads), spare PLA product terms[28], etc. to ease the implementation of
future ECOs and to enable FIB modifications on existing silicon.

A problem with the spare cells methodology is what happens if you pick the wrong type of cell?
What happens if you don’'t have enough spares, or they are too far away? A superior approach is
called gate-array backfill [29]31]. Thistechnique adds gate-array cellsin all of the space on the
die that is unoccupied by active circuitry. These gate-array cells require only metal layersto be
characterized into any needed logic gate. Vendors using this technique include IBM [29],

Texas Instruments [32], and LS| Logic [33].

Gate-array backfill isa powerful methodology that supports very large metal-only ECOs.
Consider that atypical 100k-gate block on a cell-based design might have 80% utilization. The
remainder of the active area is backfilled with gate-array cells. Assume after tapeout we need to
implement an ECO that requires 1,000 gates—all of which must be created from the backfilled
gate-array cells. Thisisalarge ECO, however it only represents a 1% increase to the original
gates in the block. Adding our ECO gatesto theinitial 100k gates marginally increases the
utilization from 80% to 81%. Routability and timing closure are still major issues, but placement
should not be a problem.

4.4 Vocabulary

We use the following terms to describe netlists and how they differ. They are summarized below
in Table 6.

Textually identical
UNIX di ff saysthe netlist files are the same, character for character.

Syntactically identical

Cellnames are the same, connectivity is the same, netnames are the same, but the netlist files
are textually different. Perhaps statements are in a different order, or line breaks are different.
(This could be called lexically identical, although computer science types would quibble.)

SNUG San Jose 2004 9 The Human ECO Compiler

Vocabulary

Structurally identical

Cellnames are the same, connectivity is the same, nethames are different.

Structurally different

Cellnames are different and/or connectivity is different.

Functionally identical

Same behavior. An equivalence checker (e.g., Formality) says the netlists are equal. A struc-
turally different netlist can still be functionally identical.

Table 6: Types of netlist equivalence

Vocabulary term text the same same same fL_Jnctic_Jnal ly
same? | cellnames? | connectivity? | netnames? | identical?
textually identical yes yes yes yes yes
syntactically identical no yes yes yes yes
structurally identical no yes yes no yes
structurally different no maybe maybe maybe maybe

These next terms are dlightly modified from similar definitions introduced by ECO Compiler.

old RTL
The RTL design description from which the old netlist was synthesized.

old netlist
The synthesized and optimized old RTL.

new RTL

The old RTL modified to include the engineering change order.

new netlist

The netlist synthesized from the new RTL.

ECO netlist

The gate-level mapped design generated by the ECO flow. This netlist isfunctionally identical
to the new netlist, but is as syntactically identical as possible to the old netlist.

SNUG San Jose 2004 10 The Human ECO Compiler

Basic flow to apply an ECO to aleaf module

5.0 Basicflow to apply an ECO to aleaf module

Hereisasimple example of aleaf module that is compiled once and then linked. The hierarchy is
not changed during the synthesis process, so this module existsin the final netlist. (This could
happen with bottom-up compile, or with a top-down compile that preserves hierarchy.)

The basic flow is as follows:

Step 1.
Step 2.
Step 3.

Step 4.
Step 5.
Step 6.
Step 7.

Use Formality to confirm equivalence of old RTL and old netlist
di ff theold RTL and new RTL

Use Formality to confirm differences between old netlist and new
RTL

Explorethe old netlist with Design Vision and Formality

Design alogic fix that implementsthe ECO in the old netlist
Modify the old netlist to make the ECO netlist

Use Formality to confirm thenew RTL agreeswith the ECO netlist

SNUG San Jose 2004 11 The Human ECO Compiler

Basic flow to apply an ECO to aleaf module

Using the following simple example (Figure 7) we will discuss each step in detail .

/1 $Id: flops.v,v 1.1 2003/10/31 17:06: 05 sgol son Exp $
nmodul e flops (clk, ina, inb, outc);

i nput clk, ina, inb;

out put outc;

reg flopa, flopb, flopc;

al wvays @ (posedge cl k) begin
flopa <= ina;
flopb <= inb;
end

wire nysig = flopa & fl opb;
Wi re nysig bar I'nysig;

al ways @ (posedge cl k)
flopc <= nysig_bar;

assign outc = flopc;
endnodul e
/'l $Log:
/1

/1 Revision 1.1 2003/10/31 17:06: 05 sgol son
/'l new checkin

flops.v,v $

Figure 7. flops.v RTL version 1.1

After synthesis (using the Synopsys class.db library) the resulting netlist* is

nmodul e flops (clk, ina, inb, outc);

input clk, ina, inb;

out put outc;
wire n52, n53, n54, nb55;
AN2 U12 (.A(n53), .B(n52), .Z(n54));
IV U3 (.A(n54), .Z(n55));
FD1 flopa_reg (.D(ina), .CP(clk), .Qn52), .Q\());
FD1 flopb_reg (.D(inb), .CP(clk), .Qn53), .Q\());
FD1 flopc_reg (.D(n55), .CP(clk), .Qoutc), .ON());

endnodul e

Figure 8. flops.psv synthesized netlist version 1.1

3. All these examples are in Verilog. Similar techniques can be used in VHDL.
4. For gate-level netlists we use the file suffix psv meaning post-synthesis Verilog.

SNUG San Jose 2004 12

The Human ECO Compiler

Basic flow to apply an ECO to aleaf module

Now let’s assume we are given the following update. According to our bug tracking tool the new
RTL fixes gnat 1234.

/1 $Id: flops.v,v 1.2 2003/12/25 06:15: 23 sgol son Exp $

nmodul e flops (clk, ina, inb, outc);
i nput clk, ina, inb;
out put outc;

reg flopa, flopb, flopc;

al wvays @ (posedge cl k) begin
flopa <= ina;
flopb <= inb;
end

wire nysig = flopa || flopb;
wire nysig bar = !nysig;

al wvays @ (posedge cl k)
flopc <= nysig_bar;

assign outc = flopc;
endnodul e

Il $Log: flops.v,v $

/1

/1 Revision 1.2 2003/12/25 06: 15: 23 sgol son
/1 bugfix for gnat 1234

/1

/1 Revision 1.1 2003/10/31 17:06: 05 sgol son
/'l new checkin

Figure 9. flops.v RTL version 1.2
Figure 7 isthe old RTL. Figure 8 isthe old netlist. Figure 9 is the new RTL.
Step 1. Use Formality to confirm equivalence of old RTL and old netlist

Thisisavery important step. Do not skip this! Eventually you will use Formality to confirm that
the new RTL and the ECO netlist are equivalent. If you have a problem getting that to work, you
will naturally assume that your ECO iswrong. Instead, perhaps the Formality setup isn’'t quite
right! The only way to tell isto prove the Formality setup first, by comparing the old RTL and the
old netlist. Also this ensures that the old netlist actually was derived from the old RTL.

SNUG San Jose 2004 13 The Human ECO Compiler

Basic flow to apply an ECO to aleaf module

Step 2.di f f theold RTL and new RTL

This gives us afeel for what is going on—what has changed? Inputs, outputs, flops, logic? |

recommend you use di f f

-c ol d_RTL new_RTL. The- c argument gives some context

around the differences (see Figure 10).

*** f|lops.v.1l Thu Dec 25 22:49:11 2003
--- flops.v.2 Thu Dec 25 22:50: 03 2003

EE R I R O

* % % 1’4 * % k%

' // $lId: flops.v,v 1.1 2003/10/31 17:06: 05 sgol son Exp $

nmodul e fl ops (clKk,

ina, inb, outc);

i nput clk, ina, inb;

e 1,4 ----

' // $lId: flops.v,v 1.2 2003/12/25 06:15: 23 sgol son Exp $

nmodul e fl ops (clk,

ina, inb, outc);

i nput clk, ina, inb;

EE R I R O

* % % 11 17 * % k%

flopb <= inb;

end

! wire nysig = flopa & fl opb;
wire nysig bar = !nysig;

al wvays @ (posedge cl k)

ce- 11,17 ----

flopb <= inb;

end

! wire nysig = flopa || fl opb;
wire nysig bar = !nysig;

al ways @ (posedge cl k)

EE R R O

* % % 23’ 27 * k% %
--- 23,30 ----

Il $Log: flops.v,v $

11

+ // Revision 1.2 2003/12/25 06:15: 23 sgol son
+ // bugfix for gnat 1234

+ //

/1 Revision 1.1 2003/10/31 17:06: 05 sgol son

/'l new checkin

Figure 10. Differences between old RTL and new RTL

SNUG San Jose 2004

14 The Human ECO Compiler

Basic flow to apply an ECO to aleaf module

Therevision id has changed, and the revision history has been updated. The new comment
confirms that we are working on gnat 1234. Only one functional change has been made; net
mysi g has changed from AND to OR.

Step 3. Use Formality to confirm differences between old netlist and new RTL

At first this seems like an odd thing to do—of course they will be different! Not necessarily.
Modifications to the RTL may not actually cause afunctional change. Consider the following
change:

al ways @ (posedge cl k) addr[31:0] <= data_reg2[31:0] // old RTL
al ways @ (posedge cl k) addr[31:0] <= data_reg3[31:0] // new RTL

At first glance it appearsthat all 32 flops need to have their input values changed. However it
might turn out that some (or al) of thedat a_r eg3 bitsare dways equal tothedat a_r eg2
bits, therefore no ECO needs to be performed on those bits. Formality will tell you which flops
and outputs are affected by the RTL change and actually need an ECO.

Synthesis can do deep and mysterious things to your RTL. Trust your equivalence checker.
Step 4. Exploretheold netlist with Design Vision and For mality

Netnamesin the RTL aretypically not preserved in the gate-level netlist. Thisis unfortunate; we
need to find internal netnamesin order to modify them or because we need that signal to make a
change elsewhere. In our example earlier (Figure 10 on page 14) we need to find my si g in order
to modify it, and we need to find signalsf | opa and f | opb to make the modification.

If the signal isan input or output of a sequential element then it isfairly easy to find the signal.
Refer back to our example old RTL and old netlist (Figure 7 and Figure 8 on page 12). Net

f | opa isthe output of aflip-flop which takes the namef | opa_r eg in the netlist, thus the
equivalent netlist netisn52. Likewise RTL net f | opb isequivalent to netlist net n53.

Internal nets are trickier. Some equivalence checkers will automatically map these as part of their
normal flow. (Thisis another reason to run Step 1.) For example, DesignVERIFYer from

Chrysal is® will print the equivalence report shown in Figure 11.

Equi val ence #7 - The two groups are equival ent.
-> NSB +1 17258 A $371

+1 17258 A nysig

+1 5324 B. n54

-1 13346 B. n55

-1 13346 B. U13. Z
-> NSB +1 5324 B. U12. Z

Figure 11. DesignVERIFYer equivalence report

5. Bought by Avant!, bought by Synopsys, now dead.

SNUG San Jose 2004 15 The Human ECO Compiler

Basic flow to apply an ECO to aleaf module

Thistellsusthat mysi g (fromthe RTL design A.) isequivalent to netlist net n54 (design B.)
which isthe Z pin of cell U12. Also there is an inverted version of nysi g on net n55 whichis
the Z pin of cell U13. Such areport isinvaluable when planning ECOs to a netlist.

Formality does not have such a direct report. During verification these internal equivalences are
found and used, but sadly that information is not retained. However you can run the graphical
logic cone viewer and query individual nets that you suspect are equivalent. In the above example
you would say

verify r:/WORK/flops/nysig i:/WORK/fl ops/ n54

and Formality will confirm their equivalence.

The Formality GUI can be used to interactively examine your netlist. Check the documentation
for examples.

Design Vision can be used to interactively explore a netlist. Even avery large netlist can be
effectively and easily investigated. The important thing to remember is that you do not want to
draw the whole schematic, just alittle bit of it. Here is the basic procedure:

1. Start up Design Vision.

2. read_db your _design.db ; link ; reset_design ; update_timng
Alternatively you could read in a. pdb from Physical Compiler, or read the Verilog netlist.
For very large designs this may take several minutes.

3. Select the proper design in the hierarchy, then dismissthe hierarchy browser. Thisleaves more
room for the schematic windows.

4. From the menu bar select Schematic > Add Paths From/Through/To...

5. Inthedialog box select Delay type: min
Thisisvery important. It makes Design Vision draw the shortest logic path, which iswhat you
want when you are exploring a netlist (especially alarge netlist).

6. Inthediaog box usethe From: / Through: / To: boxes and type in the pin/port you want to
investigate. You can also give a space-separated list of pins or ports (be sure and change the
Max paths: value to be greater than 1).

7. Click OK (or Apply to keep the dialog box around for future use)

Now you can expand the schematic by left-click selecting ping/nets/cells then right-click to pop
up amenu and select Add Next Fanin/Fanout Level or Add Logic > Fanin/Fanout...

If you draw the wrong thing, right-click to pop up a menu and select Back to undo. There are
multiple levels of undo.

If you select objects in the schematic window, then you can automatically import the selected
objects into the From/Through/To text boxes of the Add Paths From/To/Through to Path
Schematic dialog box by clicking the Selection button. Make sure you have the proper object

type.

SNUG San Jose 2004 16 The Human ECO Compiler

Basic flow to apply an ECO to aleaf module

Thetrick isknowing where to start the schematic. If you know that the logic you are investigating
begins with a particular flop, or ends on a particular port, then use those as a starting point.

It is best to add one fanout/fanin level at atime. Otherwise you run the risk of the tool attempting
to draw lots of logic. If you ask it to draw something and the tool goes away for along time, using
up CPU but not drawing anything, chances are you asked it to do too much. If you think a pin may
have alarge fanout (or fanin), before you draw that net try

report _net [all _connected cell nane/ pin_nang]
Once you get the schematic you want, for future reference print it out and/or save the PostScript

into afile. For our small example we get the schematic of Figure 12 (which corresponds to the old
netlist of Figure 8 on page 12).

flopb_reg
Q
inb D flopc_reg
53 _
oNp— |
u13
/\ QF—outc
U12 n54 n55 D
QN[O
flopa_reg 52 /\
Q
ina—— D
QN O—
/\

Figure 12. Schematic for flops.psv synthesized netlist version 1.1

SNUG San Jose 2004 17 The Human ECO Compiler

Basic flow to apply an ECO to aleaf module

Step 5. Design alogic fix that implementsthe ECO in the old netlist

Recall in Step 4. we discovered that RTL signal f | opa isequivalent to netlist net n52. Likewise
f | opb isequivalent to n53. Thereisonly onelogical AND of these two signals, the 2-input gate
U12. Furthermore we can see in the schematic that U12 eventually drivesf | opc_r eg. Sothe
fix is simple enough—cut out the U12 gate, and replace it with a 2-input OR gate.

A good way to document the fix isto take your printed schematic and manually mark up the
desired changes. Use a distinctive color such asred (see Figure 13).

bugfix_gnat1234 or

net_bugfix_gnatl234 or
flopb_reg
Q ®
inb D flopc_reg
53 _
oNpo—| |
uU13
/\ QF—outc
QN O—
flopa_reg 52 /\
Q
ina—— D
ONO—
/\

Figure 13. Old schematic with ECO added, corresponding to flops.v version 1.2

Old net n54 isleft with no loads. Your design rules may require that aload cell be placed on this
net.

SNUG San Jose 2004 18 The Human ECO Compiler

Basic flow to apply an ECO to aleaf module

Step 6. Modify the old netlist to make the ECO netlist

For such asimplefix, the easiest way to implement it is to edit the netlist directly (see Figure 14).

modul e flops (clk, ina, inb, outc);
i nput clk, ina, inb;
out put outc;
wire n52, n53, nb54, nb55;
AN2 Ul2 (.A(n53), .B(n52), .Z(n54));
/1 bugfix gnat 1234
Wi re net_bugfix_gnat 1234 _or;
[/ 1V U3 (.A(n54), .Z(n55));
IV U13 (.A(net_bugfix _gnat1234 or), .Z(n55));
OR2 bugfix_gnat 1234 _or (.A(n53), .B(n52), .Z(net_bugfix_gnatl1234 or));
/1 end of bugfix gnat 1234
FD1 flopa_reg (.D(ina), .CP(clk), .Qn52), .Q\));
FD1 flopb_reg (.D(inb), .CP(clk), .Qn53), .Q\());
FD1 flopc_reg (.D(n55), .CP(clk), .Qoutc), .ON());
endnodul e

Figure 14. ECO netlist corresponding to flops.v version 1.2

| recommend the following editing techniques:

* Theedit is surrounded by comment lines giving the unique ECO name “gnat 1234.”

* When modifying aline, the original lineisleft in as a comment.

* New cellnames and netnames include the ECO name to avoid possible conflicts.

* The output net from an ECO cell isthe name of the cell with prefix net _.

* Wiredeclarationsfor your ECO nets are recommended but not strictly necessary for structural
netlists.

Note that even though the U12 cell isthe one being replaced, the edit isdoneto itsload cell U13.
This|leaves the original net untouched, in caseit is used elsewhere.

Step 7. Use Formality to confirm the new RTL agreeswith the ECO netlist

Rerun the scripts you created for Step 1. but now compare the new RTL with the ECO netlist.
When the comparison is clean, your ECO is done.

SNUG San Jose 2004 19 The Human ECO Compiler

Advanced topics

6.0 Advanced topics
6.1 Use Design Compiler netlist editing commandsto implement the fix

In addition to using atext editor on the netlist (see Step 6. on page 19) there are more ways to
implement an ECO. Often we will use a combination of techniques, or use different procedures
for different ECOs.

For example, you can implement your change by using the netlist editing commandsin Design
Compiler. This technique enables you to make intricate changes using sophisticated Tcl
procedures. Plus staying within Design Compiler might make more sense for your particular flow.
Figure 15isaDC Tcl script that implements the gnat1234 ECO described earlier.

create_cell bugfix gnat1234 or class/OR2
create_net bugfix_gnat 1234 or_net

connect _net [all _connected Ul2/A] bugfix_gnat1234 or/A
connect _net [all _connected Ul2/B] bugfix _gnat1234 or/B
connect _net bugfix _gnat 1234 _or _net bugfi x _gnat 1234 or/Z

di sconnect _net [all_connected U13/A] UL3/A
connect _net bugfix _gnat 1234 _or _net Ul3/A

Figure 15. Design Compiler Tcl script to implement ECO gnat 1234

SNUG San Jose 2004 20 The Human ECO Compiler

Use Design Compiler to synthesize the ECO logic

6.2 Use Design Compiler to synthesizethe ECO logic

For very complex fixes you can use Design Compiler to synthesize the new logic, then paste the
gatesinto your netlist. Thisis an extremely powerful technique. Starting with the simple flow we
outlined earlier in Section 5.0 on page 11, the first steps are unchanged:

Step 1. Use Formality to confirm equivalence of old RTL and old netlist
Step 2. diff theold RTL and new RTL

Step 3. Use Formality to confirm differences between old netlist and new
RTL

Step 4. Explorethe old netlist with Design Vision and Formality

Step 5. Design alogic fix that implementsthe ECO in the old netlist
Now we get to the interesting part:
Step 6A. Writea delta RTL modulethat describesthe ECO logic

Step 7A. Edit thisdelta RTL intotheold netlist to create a hybrid gatestRTL
ECO netlist

Step 8A. Use Formality to confirm thenew RTL agreeswith thishybrid ECO
netlist

Step 9A. Synthesizethe delta RTL module

Step 10A.Edit theresulting delta gatesinto the old netlist to createan ECO
netlist

and the final step remains the same:

Step 11A.Use Formality to confirm thenew RTL agreeswith the ECO netlist

WEe'll discuss each of the new stepsin detail.

SNUG San Jose 2004 21 The Human ECO Compiler

Use Design Compiler to synthesize the ECO logic

Step 6A. Writeadelta RTL module that describesthe ECO logic

Figure 16 is a Verilog modul e that implements the new logic for our f | ops. v example. We will
call thisadelta RTL module.

/1 fixes gnat 1234 in flops.v version 1.2
nmodul e gnat 1234 (

/1 port declarations
i nput n53,

i nput n52,

out put nysig

)

/'l fix the port names to the correct RTL names

wire flopa = n52;

wire flopb = n53;

R e R
/'l the logic

assign nmysig = flopa || flopb;
endnodul e

Figure 16. Delta RTL implementing ECO logic for gnat 1234

Thei nput declarations correspond to nethames from the old gate-level netlist. The output port
nmysi g isthe fixed version that needs to be edited into the netlist.

Thewi r e statements are used to map the old netlist names to the RTL names. This allows the
actual ECO logic statements to be directly copied from the new RTL (see Figure 9 on page 13).

The module name is taken from whatever name we are giving this particular ECO.

This module is never simulated—it is only used to generate the proper ECO gates.

SNUG San Jose 2004 22 The Human ECO Compiler

Use Design Compiler to synthesize the ECO logic

Step 7A. Edit thisdelta RTL into the old netlist to create a hybrid gatestRTL ECO netlist

modul e flops (clk, ina, inb, outc);
input clk, ina, inb;
out put outc;
wire n52, n53, nb4, nb5;
I delta RTL starts here
/1 fixes gnat 1234 in flops.v version 1.2

/I modul e gnat 1234 (

/1 port declarations
[1input n53,

[1input n52,

/1 out put nysig

wire nysig;

Iy,

/'l fix the port names to the correct RTL names

n52;
n53;

wire flopa
wire flopb

/'l the logic
assign nmysig = flopa || flopb;

/' endnodul e

/11 delta RTL ends here
AN2 U12 (.A(n53), .B(n52), .Z(n54));

/1 bugfix gnat 1234

Il 1V UL3 (.A(n54), .Z(n55));
IV UL3 (.A(nysig), .Z(n55));

/1 end of bugfix gnat 1234
FD1 flopa_reg (.D(ina), .CP(clk), .Qn52), .Q\());
FD1 flopb_reg (.D(inb), .CP(clk), .Qn53), .Q\());
FD1 flopc_reg (.D(n55), .CP(clk), .Qoutc), .Q\());

endnodul e

Figure 17. Hybrid ECO netlist comprising old netlist + delta RTL

Starting with the old netlist (Figure 8 on page 12), the delta RTL is pasted in at the top right after
thewi r e declarations. Thisalowsthe RTL statementsto see all the old wires, and any new wires
declared inthe RTL can be used elsewherein the netlist. Thenodul e, endnodul e, andi nput
statements are commented out. (Normally these would be del eted; they have been left into aid
discussion.) The out put statements have been changed towi r e declarations.

Furthermore, old inverter UL3 has been edited to graft the ECO logic into the existing gates
(compare with Figure 14 on page 19).

SNUG San Jose 2004 23 The Human ECO Compiler

Use Design Compiler to synthesize the ECO logic

Step 8A. Use Formality to confirm the new RTL agreeswith thishybrid ECO netlist

Thisisthe key step. Rerun the scripts you created for Step 1. but now compare the new RTL with
the hybrid netlist. If Formality says these two descriptions are equivalent then we continue. If not,
then modify the delta RTL until equivalence is reached.

You can edit the delta RTL right in the hybrid netlist. This makes turnaround very fast—thereis
no need to synthesize new gates every time you need to make a change. Furthermore it is much
easier to play “what if” games when testing possible mappings of old netlist nethames to actual
RTL netnames. The Formality GUI can be very helpful when exploring any differences.

Step 9A. Synthesizethe delta RTL module

Thisisavery simple synthesis run. There are no timing or design rule constraints; all we want is
correct functionality and the smallest possible area. First the delta RTL sourceisread in, then all
input ports are given infinite drive, all output ports have zero load, and awireload model is
selected that has zero resistance and capacitance for all interconnect. Max areais likewise set to
zero:

read_veril og gnat1234.v

set_wire | oad nodel -name NONE
set_wire_| oad_node top

set _drive O [all _inputs]

set _load 0 [all _outputs]
set_max_area O

All new cells must be given unigue cellnames that do not conflict with any existing cellsin the old
netlist. Thisis accomplished by incorporating the ECO name into the instance hame prefix:

set conpil e_instance_name_prefix “bugfix_gnat1234_ U
set conpile_instance_name_suffix “*

The compile command usesthe - ungr oup_al | switch to ensure that any inferred DesignWare
components do not create anew level of hierarchy. Alsothe- no_desi gn_r ul e optionis
selected, and high effort is used for both mapping and area:

conpile -ungroup_all -map_effort high -area_effort high -no_design_rule
Finally we use change_namnes to force al new nets to have unique legal netnames:

define_nane_rul es netnames -type net -map { { \
!_!!}, \

!_!!}, \

!!!}, \

n", “bugfix_gnat 1234 "} \

“[_“’,
g
A

[t Kt W Waan)

P}

define_nane_rul es add_net -type net -map { {{““bugfix”,”net_bugfix”}} }
define_nane_rules fix_ports -type net -equal _ports_nets

change_nanes -rul es netnanes

change_nanes -rul es add_net
change_nanes -rules fix_ports

SNUG San Jose 2004 24 The Human ECO Compiler

Use Design Compiler to synthesize the ECO logic

Figure 18 shows the entire script.

HHHHHHHHHHH B HH R R R R TR R R R R R R R RS
define sone useful nane rules

define_nane_rul es netnanmes -type net -map { { \
“1”_”}1 \

n", “bugfix_gnat 1234 "} \

define_nane_rul es add_net -type net -map { {{““bugfix”,”net_bugfix"}} }
define_nane_rules fix_ports -type net -equal ports_nets

HHHHH IR R HHH R R PR R R TR R R R R R R R R R R R R
read_veril og gnat1234.v

set_wire_| oad_nodel -nanme NONE

set_wire_ | oad_node top

set _drive 0 [all _inputs]

set load 0 [all _outputs]

set _max_area O

set conpile_instance_name_prefix “bugfix_gnat1234_U
set conpile_instance_name_suffix “*

conpile -ungroup_all -map_effort high -area_effort high -no_design_rule
change_nanmes -rul es netnanes
change_nanes -rul es add_net

change_nanmes -rules fix_ports

wite -f verilog -out gnat1234. psv
wite

report_area -nosplit
report_reference -nosplit

redirect gnat1234.report_net {report_net -nosplit}
redirect gnat1234.report_cell {report_cell -nosplit}

exit
Figure 18. Design Compiler script to synthesize delta RTL into delta gate-level netlist

The reports at the end can be reviewed to verify that all new cells and nets have unique names.
New cellnames must start with bugf i x_gnat 1234 and new netnames must start with
net _bugfi x_gnat 1234.

SNUG San Jose 2004 25 The Human ECO Compiler

Use Design Compiler to synthesize the ECO logic

Figure 19 shows the resulting delta netlist.

nmodul e gnat 1234 (n53, n52, nysig);
i nput n53;
i nput n52;
out put nysig;
wire net _bugfi x_gnat 1234_1;
I'V bugfix_gnat1234_Ul (.A(net_bugfix_gnat1234_1), .Z(nysig));
NR2 bugfix_gnat1234_U2 (.A(n52), .B(n53), .Z(net_bugfix_gnat1234_ 1));
endnodul e

Figure 19. Delta netlist corresponding to delta RTL from Figure 16
Step 10A. Edit the resulting delta gatesinto the old netlist to create an ECO netlist

Similar to how the hybrid netlist was created, we start with the old netlist (Figure 8 on page 12)
and paste the delta netlist in right after the wi r e declarations (see Figure 20).

nmodul e flops (clk, ina, inb, outc);
input clk, ina, inb
out put outc;
wire n52, n53, n54, nb55;
/1 bugfix gnat 1234
wire nysig;
wire net bugfi x_gnat 1234 1;
IV bugfix gnat1234 Ul (.A(net _bugfix_gnat1234 1), .Z(nysig));
NR2 bugfix_gnat1234 U2 (.A(n52), .B(n53), .Z(net_bugfix gnat1234_ 1));
/1 end of bugfix gnat 1234
AN2 ULl2 (.A(n53), .B(n52), .Z(n54));
/1 bugfix gnat 1234
[/ 1V U13 (.A(n54), .Z(n55));
IV U13 (.A(nysig), .Z(n55));
/1 end of bugfix gnat 1234
FD1 flopa_reg (.D(ina), .CP(clk), .Qn52), .Q\N());
FD1 flopb_reg (.D(inb), .CP(clk), .Qn53), .Q\N());
FD1 flopc_reg (.D(n55), .CP(clk), .Quoutc), .ON());
endnodul e

Figure 20. ECO netlist comprising old netlist + delta gates

Thenodul e, endnodul e, and i nput port declarations from the delta netlist are deleted. The
out put port declarations are converted tow r e statements.

Step 11A. Use Formality to confirm the new RTL agreeswith the ECO netlist

Rerun the scripts you created for Step 1. (and used again in Step 8A.) but now compare the new
RTL with the ECO netlist. When the comparison is clean, your ECO is done.

SNUG San Jose 2004 26 The Human ECO Compiler

Adding ports to a subdesign

6.3 Adding portsto a subdesign

Sometimes you would like to alter the ports of a subdesign. Perhaps your spare gates are at the
wrong level of hierarchy, or you need asignal that only existsin a subdesign. In these cases you
can text edit both designs, or you can add a port using Design Compiler editing commands.

Consider the following hierarchical design (Figure 21).

design: top

U_middle
design: middle

a as

)

Ccs Cc

—t

)uz

b bs /;/

Figure 21. Example hierarchical design

We would like to add a port ds to the subdesign m ddl e (Figure 22).

design: top

U_middle
design: middle

Figure 22. Example hierarchical design with new port added to subdesign

SNUG San Jose 2004 27 The Human ECO Compiler

Adding ports to a subdesign

Your first attempt will be something like

current _design top
l'ink

current _design niddle
create_port -direction in {ds}

current _design top
l'ink

But now t op will fail to link, because the ports now mismatch! t op does not know about new
port ds.

One solution isto create a copy of design m ddl e and add it in your design as atemporary
placeholder to keep track of the port connectivity. Then add the port to mi ddI e, put the instance
of m ddl e back in your design, and wire it up. Delete the temporary design and you are done.
Figure 23 is a script that shows how it works.

current _design top

create a tenporary copy of the target design
copy_design niddl e TEMP_DESI GN

instantiate the tenp design
create_cell TEMP_CELL TEMP_DESI GN

wire up the tenp design ports in parallel with the target instance ports
foreach_in_collection _pin [get_pins U mddle/*] {

set _name [get_attribute $_pin pin_nane]

connect _net [get_nets -of _objects $_pin] [get_pins TEMP_CELL/$_nane]
}

remove the target instance
remove_cell U mddle

add the port to the target design
current _design niddle
create_port -direction in {ds}

put the target instance back, and wire up its ports
current _design top
create cell Uniddle mddle
foreach_in_collection _pin [get_pins TEMP_CELL/*] {
set _name [get_attribute $_pin pin_nane]
connect _net [get_nets -of _objects $_pin] [get_pins U niddl e/ $_nane]

}

delete the tenp design
renmove_cell TEMP_CELL
renove_desi gn TEMP_DESI GN

Figure 23. Design Compiler Tcl script to add a port to a subdesign

SNUG San Jose 2004 28 The Human ECO Compiler

More on netlist dissection

6.4 Moreon netlist dissection

When tracing signals in Design Vision, be careful to find all the copies of the signal you are
looking for. Consider thisRTL fragment:

assign enable = a || b;
al ways @ (posedge clk) rdy <= enable ;

Suppose our ECO requires us to change signal enabl e. We need to find it in the netlist. Using
Design Vision we trace backwards from flop r dy_r eg and find something like Figure 24.

rdy_reg

n45 U89
n46 n34 D Q

A\

Figure 24. Design Vision schematic

It appearsthat n34=enabl e and aquick Formality check confirmsthat a=n45 and b=n46.

rdy_reg

a n45 enable
us9 D L

b n46 n34 Q
/\

Figure 25. Annotated schematic

Soweare all set, right? Not so fast! We need to ook at the fanout of a (net n45) and b (net n46).
When you use the Design Vision menu Schematic > Add Paths From/Through/To..., the resulting
schematic window has annotated nets. Just roll the cursor over a net, and a pop-up appears
showing the netname and its fanout. Thisis extremely useful in determining if there are additional
loads that are not in the current schematic view. In this case we find afanout of three (Figure 26).

n19 enable_bar
[
’—Ebi n6é enable

a n45) U89 enable D ol

b n46 / / n34
/\

rdy_reg

Figure 26. Schematic showing more logic

SNUG San Jose 2004 29 The Human ECO Compiler

More on netlist dissection

WEe've found another net where enabl e exists, plus an inverted version. Are we done yet? No,
wereally need to trace a and b back through any inverter/buffer treesto their original source, and

then forward again (Figure 27).
n19 enable_bar

[
U122 u10 né enable
a_bar
i) uir = >o n4s rdy_reg
a
u23
enable
—) n46 U89 D —
| v - > f) / n34 Q
/\
u93 enable
a
u94

Figure 27. Schematic showing still more logic

Yet another version of enabl e, and it'sinside complex OAI gate U94. But we're still not done;
you need to trace back the input nets driving U1 to seeif there is another XOR gate in parallel
with Ul... You get the idea.

By careful inspection of the RTL we could have anticipated this—how many placesisenabl e
used in the RTL? Isthere anywhere else that the expression a| | b isused? Wheredo a and b go?

Assume that elsewherein our RTL we find this statement:
assign detonate = ¢ & (b || a || ready);

It appears that some of the nets we thought were enabl e signals may instead be part of this
det onat e signal (because both signalsincludetheterma| | b). If our ECO requires achangeto
enabl e but not det onat e, how can we distinguish between the two?

One method isto usetiming analysisto find all paths through signal a. Do the same with signal b.
Some endpoints will correspond to enabl e and othersto det onat e. Careful examination of
the timing reports will allow you to determine which of the a| | b netswe found in the netlist are
used to create enabl e (and thus need the ECO) and which should remain unchanged. When in
doubt, make the fix and ask Formality to confirm.

SNUG San Jose 2004 30 The Human ECO Compiler

Laws of Boolean algebra

6.5 Laws of Boolean algebra

When you are decrypting a netlist and attempting to correlate it to your RTL, often you will need
to apply DeMorgan’s laws and the principal of duality [34]. Every logic symbol has a dual
representation which is arrived at by turning all ANDs into ORs, all ORsinto ANDs, and
inverting all inputs and outputs. Note this works for complex gates as well as simple ones. See
Figure 28 for examples.

Equivalent
Symbol Symbol

1 -
D
>

D
D
et

Figure 28. Dual representations of example logic gates

b

Hovos

W)

Design Vision can only draw one representation of alogic gate. Sometimesit is useful to convert
the symbol to its dual by hand on your printed schematic, to make the logic easier to follow.

Synthesis can do profound and mysterious things to your RTL. Observe, marvel, and learn.

SNUG San Jose 2004 31 The Human ECO Compiler

Related logic sometimes has related names

6.6 Related logic sometimes hasrelated names

Sometimes related logic will end up with similar cell names and nethames. This can be helpful
when dissecting a netlist. Consider the example netlist fragment of Figure 29.

| x163 n860 “Ix6415 combined[1]

| x530 n861 "I x6584 combined[5]

| x532 n862 "I xs536 combined[9]

X204 |] .
~l>0 1860 X534 n858 %6140 combined[13]

Figure 29. Schematic showing related logic having similar names

i

Notice that the netnames on the outputs of the 2-input NANDs are all related. Also, three of the
2-input NANDs have similar cellnames.

6.7 Morewaysto design the fix

The difficult part of designing an ECO is typically not the sequential logic (flip-flops) but rather
the combinational logic.

combinational

inputs logic output

Figure 30. Logicin need of an ECO

Consider Figure 30. Naturally this “output” could be driving the D-input of aflop; however that
does not affect the implementation of the ECO in the combinational logic. Likewise the “inputs’
could be actual inputs to the module, or perhaps Q-outputs from flops in the module, or some of
each. In any case we can consider them inputs to the combinational logic, and they are easy to find
in the netlist.

There are several waysto design the actual fix to the combinational logic. If you can figure out the
details of the old netlist (like we did in Step 5. of the simple example back on page 18) then you
have an incremental fix. You've actually implemented the fix pretty much the way an incremental
synthesis tool like ECO Compiler would.

SNUG San Jose 2004 32 The Human ECO Compiler

More ways to design the fix

What if the logic istoo complicated to figure out? One approach isto completely replace the
existing logic with the correct logic (Figure 31). Thisis a brute force fix. This can be very
expensive because you have doubled the gates used for this output.

mystery

. . no
INPULS me— logic

connect

—J» output

ECO
logic

Figure 31. Inscrutable mystery logic requiring brute force ECO fix

Another technique assumes that the existing logic is correct most of thetime, thusall weneed isa
signal to tell us when the existing logic is wrong. Use this bypass signal to control a mux that
selects between the original logic and the corrected ECO logic [20]. Thisis amuxed output fix.

original
output

mystery
iNPULS m— logic

output

Figure 32. Muxed output ECO fix

Inputs to the bypass and ECO logic can include the primary inputs to the module, flop outputs,
any internal signalsyou are able to find, and the original output from the mystery logic. Often the
ECO logic is simply a constant value that is forced onto the output.

The mux, ECO logic, and bypass logic are all implemented in asingle delta RTL module

(see Step 6A. on page 22). The original output must be renamed in the netlist; for example if the
output signal being fixediswr dat a[63: 0] thenrenameittowr dat a_ori g[63: 0] and feed
it asaninput to the delta RTL. Don’t forget to add awi r e declaration for these _or i g nets.

SNUG San Jose 2004 33 The Human ECO Compiler

More ways to design the fix

Rather than muxing the outputs, it might be easier to design a muxed inputs fix that forces the
inputs to a value that will give us the output we want. Thisis particularly useful in state
machines—force the current state vector and FSM inputs to values that cause the next state vector

and FSM outputs to be what we want.
mystery
logic
bypass
logic

Figure 33. Muxed inputs ECO fix

inputs
output

Combinations of these techniques can be used. You may be able to design an incremental fix for
some signals, while others require muxing or brute force.

SNUG San Jose 2004 34 The Human ECO Compiler

Flopwhacking: How to use a spare or redundant flop

6.8 Flopwhacking: How to use a spare or redundant flop

Let’sreturn to our ssmple example from before. Assume we have been given yet another update to
our module.

/1 $1d: flops.v,v 1.3 2003/12/31 23:59:58 sgol son Exp $

nodul e flops (clk, ina, inb, outc);
i nput clk, ina, inb;
out put outc;

reg flopa, flopb, flopc, new flop;

al ways @ (posedge cl k) begin
flopa <= ina;
flopb <= inb;
end

wire nmysig = flopa && fl opb;
wire nysig_bar = !nysig;

al ways @ (posedge cl k)
new_fl op <= nysig_bar ” ina;

al ways @ (posedge cl k)
flopc <= new fl op;

assign outc = flopc;
endnodul e

[/l $Log: flops.v,v $

11

/1l Revision 1.3 2003/12/31 23:59:58 sgol son
/'l bugfix for gnat 1240, update to gnat 1234
11

/1 Revision 1.2 2003/12/25 06: 15: 23 sgol son
/1 bugfix for gnat 1234

11

/1 Revision 1.1 2003/10/31 17:06: 05 sgol son
/'l new checkin

Figure 34. flops.v RTL version 1.3

Asbeforewe'll doadi ff - c onthe RTL to see what's changed. We will compare the original
version 1.1 (Figure 7 on page 12) with this new version 1.3 (Figure 34), skipping over the
previous ECO version 1.2. Sometimesit is easiest to start fresh using the original netlist from the
last al-up synthesis run, rather than add an ECO onto a previous ECO. Thisis particularly
attractive when using the delta RTL implementation technique, because you can often easily add

SNUG San Jose 2004 35 The Human ECO Compiler

Flopwhacking: How to use a spare or redundant flop

the new ECO statements to your delta RTL module. When deciding which path to take, consider
how much back-end work has been done to implement the previous ECO—all those back-end
tasks will need to be redone.

*** flops.v.1l Thu Dec 25 22:49:11 2003
--- flops.v.3 Wed Dec 31 23:59:58 2003

Rk b o R

* k% 1’2 *k k%

11

11

$Id: flops.v,v 1.1 2003/10/31 17:06: 05 sgol son Exp $

1,2 ----

$Id: flops.v,v 1.3 2003/12/31 23:57: 32 sgol son Exp $

Rk b o R

* k% 6’8 *k k%

reg flopa, flopb, flopc;

6,8 ----

reg flopa, flopb, flopc, new flop;

Rk b o R

* k% % 17’ 20 * kK%
al ways @ (posedge cl k)

flopc <= nysig_bar;

assign outc = flopc;

17,23 ----

al ways @ (posedge cl k)

new fl op <= nysig_bar ~ ina;

+ al ways @ (posedge cl k)

+
+

flopc <= new fl op;

assign outc = flopc;
kkkkkkhhkkkhkkhhkkkhk%x

* k% 25, 26 *k k%

--- 28,35 ----

11
+ // Revision 1.3 2003/12/31 23:57:32 sgol son
+ // bugfix for gnat 1240, update to gnat 1234
+ /1
+ // Revision 1.2 2003/12/25 06:15:23 sgol son
+ // bugfix for gnat 1234
+ /1

/1 Revision 1.1 2003/10/31 17:06: 05 sgol son

Figure 35. Differences between old RTL and new RTL

The update for gnat 1240 has added aflop new _f | op and an XOR gate.

SNUG San Jose 2004

36 The Human ECO Compiler

Flopwhacking: How to use a spare or redundant flop

Figure 36 shows our fix.

flopb_reg
Q
inb D flopc_reg
53 _
N n
N U13
Q outc
u12 n54 n55 }l\ oD
QN[O
flopa_reg 52 l /\
Q
ina D new_flop_reg
QN O—
/\ Q
D
QN D~
AN

Figure 36. Old schematic with ECO added, corresponding to flops.v version 1.3

After aquick delta RTL and synthesis, the resulting ECO netlist looks like Figure 37.

modul e flops (clk, ina, inb, outc);
i nput clk, ina, inb;
out put outc;
wire n52, n53, nb54, nb55;
/1 bugfix for gnat 1240
wire new fl op;
EO bugfi x_gnat 1240_U9 (.A(n55), .B(ina), .Z(net_bugfix1240 _n28));
FD1 new flop_reg (.D(net_bugfix1240 _n28), .CP(clk), .Qnew flop), .QN\());
/1 end of bugfix for gnat 1240
IV U13 (.A(n54), .Z(n55));
AN2 Ul2 (.A(n53), .B(n52), .Z(n54));
FD1 flopa_reg (.D(ina), .CP(clk), .Qn52), .Q\));
FD1 flopb_reg (.D(inb), .CP(clk), .Qn53), .Q\());
/1 bugfix for gnat 1240
I/l FD1 flopc_reg (.D(n55), .CP(clk), .Qoutc), .QN());
FD1 flopc_reg (.D(new flop), .CP(clk), .Qoutc), .ON());
/1 end of bugfix for gnat 1240
endnodul e

Figure 37. ECO netlist corresponding to flops.v version 1.3
We have increased the number of flip-flops in the design. Now you must add the new flop to the

clock tree, check the clock tree for skew problems, and modify the scan chain. This can add a
significant amount of work to the back-end flow. Is there any way to avoid this problem?

SNUG San Jose 2004 37 The Human ECO Compiler

Flopwhacking: How to use a spare or redundant flop

One possibility isto take an existing flop in the netlist and rewire it to perform the function you
want. We'll call this flopwhacking. There are several types of flops you can enlist to be whacked:

» Spare flop—One of the flops that wasinserted as part of your spare gates methodology. If you
have multiple clocks, make sure the clock net is connected to the proper one. Otherwise you
are back to fixing the clock buffer tree.

» Redundant flop—A redundant flop has the same functionality as some other flop in the design;
since they areidentical you can tie their outputs together and use one of them for your ECO.
One useful place to find redundant flopsisin a synchronous reset distribution tree [35].

» Unused flop—Thisisaflop that has some logic driving it, but never changes state (at least not
during normal operation). Perhaps a writable control register bit can be tied off as aread-only
bit, freeing up itsflop for this use. Sometimes counter registers are given excess upper bits that
are never incremented. Upper address bits (or the lowest bits) of a pipeline may be static. See
if your formal verification tool will report any flops that can never change state. If you change
the functionality of your design (e.g., by tying off acontrol register bit) be sure and modify the
RTL aswell.

In our example let’s assume that top-level Formality analysistellsusthat i na andi nb are
equivalent. Thismeansthat f | opa_r eg andf | opb_r eg are redundant flops. The netlist only
needs one of these flops; we can use the other to implement our ECO. Figure 38 shows the revised
ECO design.

tlopb_reg
Q
inb b flopc_reg
53 _
N n
Ly N Uk
QF—outc
these U12 n54 n55
D
are
equal QN O—
flopa_reg 50 /\
Q
ina D
QN O—

= —) -

Figure 38. ECO schematic modified to use redundant flopa_reg

We've disconnected f | opa_r eg from itsdriver and loads, and tied its |oads to the output of
fl opb_reg. Now wecanrewiref | opa_r eg to perform the function of new_f | op_r eg.

SNUG San Jose 2004 38 The Human ECO Compiler

Flopwhacking: How to use a spare or redundant flop

Now, how shall we actually perform the flopwhack? How do we transform the ECO netlist of
Figure 37 into the netlist of Figure 38? We could edit the text file directly, or we can use a Design
Compiler Tcl script. By using a script we can ensure that these changes are done correctly; alsoin
combination with other Design Compiler commands (e.g., ungr oup, or the port manipulation
tricks from Section 6.3 on page 27) it allows the flopsto be at different levels of the hierarchy.

An example script is given in Figure 40. To use the script, first define afew Tcl variables that
specify the flop cellnames:

set target flop {new flop_reg}
set donor_flop {flopa_reg}
set redundant _flop {flopb_reg}

$t arget _f 1 op will bereplaced by $donor _f | op. Thusthey must use the same cell from the
cell library. Prior to conpi | e, your delta RTL synthesis script should have a statement like

set _register_type -exact -flip_flop FDL [get_cell {new flop_reg}]
The previous loads on the outputs of $donor _f | op will be tied to the same outputs on

$redundant _f | op, so these cells must have functionally equivalent outputs. They don’t have
to be the same type of cell, but they must have the same output pins.

Starting with the ECO netlist of Figure 37, running the flopwhacking script shown in Figure 40
gives us the netlist of Figure 39.

nmodul e flops (clk, ina, inb, outc);

i nput clk;
i nput ina;
i nput inb;

out put outc;
wire n53, n54, n55, new flop, net_bugfix1240_n28;

EO bugfi x_gnat 1240_W (.A(n55), .B(ina), .Z(net_bugfix1240_n28));
IV U13 (.A(n54), .Z(n55));
AN2 U12 (.A(n53), .B(n53), .Z(n54));
FD1 flopa_reg (.D(net_bugfix1240_n28), .CP(clk), .Qnew_flop), .Q\());
FD1 flopb_reg (.D(inb), .CP(clk), .Qn53), .Q\());
FD1 flopc_reg (.D(new flop), .CP(clk), .Qoutc), .QN());
endnodul e

Figure 39. ECO netlist after flopwhacking

SNUG San Jose 2004 39 The Human ECO Compiler

Flopwhacking: How to use a spare or redundant flop

foreach output pin on donor flop
tie load pins to same output pin on redundant flop

foreach_in_collection _pin [get_pins -filter “@in_direction==out” $donor _flop/*] {
set _nane [get_attribute $_pin pin_nane]

get the net on this pin
set _donor_net [get_nets -of _objects $_pin]
if {$_donor_net == “*} { continue ; }

get the loads on this net

set _donor_l oads [get_pins -of _objects $_donor_net]

set _donor_loads [renpbve_fromcoll ection $_donor_|oads $_pin]
if {$_donor_loads == “*} { continue ; }

di sconnect everything fromthis net, and renove it
di sconnect _net -all $_donor_net $_donor_| oads
renove_net $_donor _net

now drive the |l oads fromthe redundant flop
set _redundant_net [get_nets -of objects $redundant fl op/$_nane]
if {$_redundant _net == ““} {
set _redundant _net flopwhacknet_${redundant _fl op}_${_nane}
echo #FLOPWHACK# Creating net $_redundant_net on pin $redundant _flop/$_nane
create_net $_redundant _net
connect _net $ _redundant_net [get_pins $redundant _fl op/$_nane]
}

connect _net $_redundant_net $_donor _| oads

}
di sconnect all pins on donor flop (you might want to | eave the clock pin al one)
foreach_in_collection _pin [get_pins $donor_flop/*] {

set _donor_net [get_nets -of _objects $_pin]

if {$_donor_net == ““} { continue ; }

di sconnect _net $_donor_net $_pin

}

connect all donor pins in parallel with target pins (except clock pins?)

foreach_in_collection _pin [get_pins $target_flop/*] {
set _name [get_attribute $_pin pin_nane]

get the net on this pin

set _target_net [get_nets -of _objects $ pin]
if {$_target_net == ““} { continue ; }

connect the donor flop to the net

connect _net $ target_net [get_pins $donor fl op/$_nane]

}

renove target flop

renmove_cel |l $target_flop

Figure 40. Design Compiler Tcl script for flopwhacking

SNUG San Jose 2004 40 The Human ECO Compiler

Flopwhacking: How to use a spare or redundant flop

When running the module-level formal equivalence check you must tell the tool that i na and
i nb are assumed equal. This should not be necessary during top-level equivalence checking,

Also for al equivalence checking you must manually map the affected flops, because name-based
mapping will try to map signal f | opa inthe RTL withf | opa_r eg in the netlist, and they are
not equivalent. Table 41 lists the signal mappings that may be required. Note there are two RTL
reg bits that map onto the singleflopf | opb_r eqg.

Table 41: Manual mappings required for proper equivalence checking after flopwhacking

RTL reg netlist flop pin

fl opa flopb_reg/ Q
fl opb flopb_reg/ Q

new fl op flopa_reg/Q

SNUG San Jose 2004 41 The Human ECO Compiler

ECO considerations for hierarchical designs

6.9 ECO considerationsfor hierarchical designs

So far our examples have been a single module. Our synthesis flows are rarely so simple!
Consider adesignt op which has three subdesigns A, B, and C. Figure 42 shows an outline of a
more representative flow for such a chip.

read _verilog all _the RTL

current _design A
conpile

current _design B
conpile

current _design C

conpile

current _design top
l'i nk
ungroup -all -flatten

wite -hier -format verilog -out top.psv

Figure 42. Example flow for hierarchical design with three subdesigns

Now assume we have an ECO for design B. Where in the flow should we implement the ECO?
One solution isto just edit the final ungrouped netlist t op. psv. This can be very tedious and
error-prone. An alternative approach is to perform the ECO at the module level, and then run the
rest of the flow as usual such that the unaffected parts of the chip are synthesized normally.
Figure 43 shows how the ECO netlist islinked in.

read_verilog all_the_RTL

current _design A
conpil e

remove_design B
read_veril og B _ECO psv ;# read the ECO netlist for design B

current _design C

conpil e

current _design top

l'ink

ungroup -all -flatten

wite -hier -format verilog -out top ECO psv

Figure 43. Modified flow reading ECO netlist for a subdesign

SNUG San Jose 2004 42 The Human ECO Compiler

ECO considerations for hierarchical designs

This can work even if you do top-down hierarchical compile, because the module boundaries are
preserved. Figure 44 shows the original flow. All the RTL isread in, and a single top-down
compileis done.

read_verilog all _the RTL

current _design top
I'i nk

conpil e ; # top-down hierarchical compile of top, A B C
ungroup -all -flatten
wite -hier -format verilog -out top.psv

Figure 44. Top-down hierarchical compile flow

Figure 45 shows the modified flow, where the ECO netlist for design B isread in to replace the
synthesized B netlist.

read_verilog all _the RTL

current _design top

l'i nk

conpile ; # top-down hierarchical conpile of top,A B, C
renove_design B J#

read_veril og B _ECO psv ;# read the ECO netlist for design B

current _design top

I'ink ;# link in the ECO netli st

ungroup -all -flatten

wite -hier -format verilog -out top ECO psv

Figure 45. Modified top-down compile flow reading ECO netlist for a subdesign

If design B has subdesigns of its own, be careful when reading in the ECO netlist. Are these
subdesignsincluded in the ECO netlist? You might wish to use the ones from the main netlist
instead. Do the port names match up? To avoid nasty | i nk problems, make sure you only have
one copy of any given design in memory.

These techniques can even beused if youdoaconpi | e -i ncrenmental orconpile -top
at the end of your script. Sometimes these compiles make only slight changes to your netlist, and
having the ECO already inserted will not perturb the results. The only way to know isto try.

Remember, if these techniques don’t work you can always fall back and make the ECO edits
directly to the final top.psv netlist. It's just harder to navigate around and dissect a big netlist.

SNUG San Jose 2004 43 The Human ECO Compiler

Repeatability

6.10 Repeatability

The techniques in the previous section only work if the scripts and flow are repeatable. This
means that every time we run our script we should get the same results—the netlist is textually
identical each and every time. The following conditions must be met [36]:

* ldentical datainputs (RTL, constraints, scripts, etc.)
e Same version of operating system and Synopsys tools
» DesignWare cache hasidentical state for each run

Thelast item is the tricky one—we don’t think about the cache changing, however it can cause
subtle differencesin the resulting netlist. (One way around thisis to delete the cache before every
run. Also consider settingthecache_wri t e_i nf o variabletot r ue so you can tell when the
cacheis modified.)

First try running your flow using the original flow and old RTL. Do you get the identical netlist?
Is this repeatable? If not, why not?

Next it's agood idea to try modifying the flow without performing the ECO. That is, instead of
reading in the ECO netlist for B, we read in the old netlist for B. Now all we have done is modify
the flow a bit. The resulting netlist should be the same as the old netlist. For example, before
attempting to use the flow in Figure 45, try the flow of Figure 46.

read_verilog all_the_RTL

current _design top

l'ink

conpil e ; # top-down hierarchical conpile of top, A B C
renove_design B CH

read_veril og B. psv ;# read the old netlist for design B

current _design top

i nk # 1ink

ungroup -all -flatten

wite -hier -format verilog -out top_test.psv

Figure 46. Modified top-down compile flow

Thist op_t est . psv netlist should be textually identical totheoldt op. psv netlist resulting
from the original flow of Figure 44. If they are identical, then the ECO flow of Figure 45 should
correctly implement the ECO to design B and |leave the other designs unchanged.

SNUG San Jose 2004 44 The Human ECO Compiler

Repeatability

Small changesto your flow can cause unexpected differencesin the netlist. Consider the four
synthesis flows described in Figure 47.

Flow W

Flow X

Flow Y

(start DC)

Flow Z

(start DC)

!

!

write -f verilog

write -f verilog

(exit DC)

(exit DC)

read RTL read RTL
apply apply
constraints constraints
compile compile
write -f verilog Verilog read_verilog
netlist *
apply
constraints
e
write -f db .db file read_db
compile -inc compile -inc compile -inc compile -inc

!

!

write -f verilog

write -f verilog

(exit DC)

(exit DC)

Figure 47. Four flows that should give identical results

You would expect these four netliststo be textually identical, but they may not. Often you will see
different netnames, and sometimes cellnames will be changed. Thisisimportant because when
we are implementing an ECO, we might modify the flow to allow reading an ECO netlist at some
point. Be careful and always check your results. You may have unexpected changes.

Thisiswhy the netlist editing commands described in Section 6.1 on page 20 are so useful.
Rather than reading a netlist you can just perform the ECO edits as part of the flow.

You can cause scan insertion to be repeatabl e by forcing the scan order to agree with the original
scan chain [37][38].

SNUG San Jose 2004 45 The Human ECO Compiler

Netlist equivalence and how to fix it

6.11 Netlist equivalence and how to fix it

We want our ECO netlist to be syntactically identical as much as possible with our old netlist
(i.e., same cellnames, same connectivity, same netnames). This minimizes the changes that the
incremental place-and-route tools will see.

What can we do if our ECO flow mixes up the netnames? or maybe even afew cellnames? Given
two netlists that are mostly structurally identical (same cellnames, same connectivity, different
netnames) there are several ways you can force the netnames to agree:

* Runacustom dc_shell script to massage the nethames [39].
» Usethedc shell change _nanes command [40].

* UseWilson Snyder’s excellent Verilog-Perl module [41] to write your own Perl script. The
script should parse the old netlist and build up a hash of cellname output pins and the
netnames they are connected to. Now parse the ECO netlist, and if you find a cellname output
pin that matches one from the old netlist, force its attached netname to be the name saved in
the hash. Check out the excellent vr enane script that comes with Verilog-Perl.

Anecdotal evidence sayschange_nanes can take along time, and sometimes doesn’t do what

you expect.

There are several ways to check that two netlists are structurally identical:

* Use Formality to compare the two netlists with all gates treated as black-boxes [42]

» Write a Perl script. Parse the two netlists and for each cellname output pin, build up alist of
pins attached to the net. Compare the lists for each matching cellname output pin.

A quick way to roughly compare netlistsisto gr ep out the cellnames from each netlist, sort the
list,and di f f theresults. Thisis necessary but not sufficient for complete equivalence.

SNUG San Jose 2004 46 The Human ECO Compiler

Random useful thoughts and suggestions about ECOs

7.0 Random useful thoughts and suggestions about ECOs
Tools
The old dc_shell dcsh command language is dead, dead, dead. Use Tcl.

Emacs cannot handle files larger than several hundred megabytes. If you need to edit such afile,
and your editor cannot handleit, usethe UNIX spl i t command to break up the file into
manageable sections. Use cat to glue them back together. Or use a different editor—large files
have been successfully edited in Vim and with Solaris textedit. Alternatively use sed or Perl to
perform your edits.

In your synthesis scripts, if you are saving a Verilog netlist and abinary . db file, dwayswrite the
Verilog netlist first. Sometimes writing the Verilog will cause implicit name changes, and you
want the . db to agree with the Verilog netlist.

wite -hier -format verilog -out ny_design.v
wite -hier -out ny_design.db

ECO Compiler has some wonderful reporting commands. Theeco_net | i st _di ff command
produces information about the differences (changes) between the old netlist and the ECO netlist
and reports the differences. Theeco_report cel | command generates areport that lists the
number and area of old cells, recycled cells, new cells, spare cells, and obsolete cellsin the ECO
netlist. Don’t you wish you had something like this? Can you write a Per| script that does it?

Use agraphical utility such as TkDiff when comparing RTL source files.

In Design Vision, you can put lists of pin and port names in the From/Through/To text boxesin
the Add Paths From/To/Through to Path Schematic dialog box. The list of names should be
space-separated, no commas, no brackets around the list. You will need to change the Max paths:
value to be greater than 1 (and perhaps the Nworst paths: value as well).

When using Design Vision, be sure you have the symbol library set properly, otherwise cells may
be drawn incorrectly. | have seen AND-OR complex gates drawn with OR-AND symbols. Very
confusing...

Get Wilson Snyder’s wonderful Verilog-Perl module [41]. It includes a script called vr enane
which creates Verilog cross-references and makes it easy to rename signal and module names
across multiple files. (Early versions of this module had problems parsing Verilog
concatenations {} so run some test cases to make sure you understand what is going on.)

You can convince management to buy Formality, Design Compiler, PrimeTime, but not atool like
ECO Compiler! So make do with the tools you have. Figure out a flow that works for you.

SNUG San Jose 2004 47 The Human ECO Compiler

Random useful thoughts and suggestions about ECOs

Design

When you tape out an ECO design, be sure and change the software-visible revision number!
Also make sure the package markings are changed.

When designing bypass logic for delta RTL fixes, you need to build asignal that indicates the
ECO logic needsto be activated (the bypass signal). L ook for flops (or combinations of flops) that
are about to change to a unique value. Grab the input pins to these flops. Look for internal signals
in unigue states.

If you cannot find a particular signal in the netlist, go ahead and build it from scratch in your
delta RTL. Copy the pertinent RTL statements from your old source RTL. Remember, you can
easily find all module inputs and flop outputs and use them asinputsto your delta RTL. If you
have more time you can go back and explore the netlist more to find the signals you have
duplicated thus saving this redundant logic.

A really smart place-and-route tool will optimize away logic that has no loads. This might happen
if amodule output is unconnected at the top level, and your synthesis flow does no top-level
optimization. Now assume you need to use that logic to perform an ECO. In the synthesized
netlist the logic isthere, however it's not in the routed netlist.

One-hot state machines are much easier to ECO than highly-encoded machines [43].

A synthesis flow using DC Ultra can perform aggressive sequential optimization on your netlist
(e.0., register retiming and FSM optimization) [44]. This makes it difficult to correlate RTL
signals with the resulting netlist, but it can be done [6].

When implementing an ECO using gate-array backfill, be sure to use the proper synthesis library.
It will be different from the normal standard cell library [45].

Much work has been done on designing spare cells to support focused-ion-beam (FIB)
repairs [25][26]. It is even possible to FIB a chip in a cavity-down package [46]-{48].

When you need to find abus for adelta RTL fix, sometimes you can only find inverted versions of
the bits. Thisisfine because once the signal isinside your delta RTL module, you can change the
name to its proper form:

wire [2:0] tclo_offset = {

1 n6546, /1 tclo_offset[2]
\tos_offset[1] , // tclo_offset[1]
n4368} ; /1 tclo_offset[O0]

In your delta RTL modulesfeel freeto use Verilog-2001 (or SystemVerilog) features. Remember,
these modules are only synthesized, never simulated.

If you have a subdesign that is multiply-instantiated, and you need to ECO only one instance,
your RTL cannot match your netlist. Change your RTL to agree, or else ECO al the instances.

SNUG San Jose 2004 48 The Human ECO Compiler

Random useful thoughts and suggestions about ECOs

When searching for signalsin anetlist, or writing a parser, be aware that Verilog allows
whitespace where you least expect it. In particular a bus name can be separated from its index.
Notethat netnamebugfi x_gnat 6362 _cel | data_i n_mangl ed[17] iswrapped across
two lines:

NAND3 bugfi x_gnat 6579_U44 (. Z(bugfi x_gnat 6362_cel | _data_i n_nangl ed
[17]), .A(net_bugfix_gnat6579 274), .B(net_ bugfix_gnat 6579 275), .
net bugfi x_gnat 6579 _276));

Figure 18 on page 25 shows an example synthesis script for adelta RTL module. There are three
change_names commands, and they are in careful order:

change_nanes -rul es netnanes
change_nanes -rul es add_net
change _nanes -rules fix ports

Thefirst changes all netnames to have bugf i x_gnat 1234 _ prepended. The second then
prependsnet _ onto that, so now all netsstart withnet _bugfi x_gnat 1234 _. Finally thelast
makes sure that all nets attached to outputs will take the output name. (You can’t combine thefirst
two into one step, because it would require a recursive mapping rule which won't work.)

You might need to add more mapping rulesto thedef i ne_name_r ul es. In particular if you
synthesize DesignWare components you may get some screwy netnames and cellnames. Check
thereport_net andreport _cel | outputsto make sure all the names are as expected. Here
is an example from a very complex delta RTL module:

define _nane rules fix DWcells -type cell -map { { \
(/N
{"~C", "bugfi x_gnat 6579 C'} \
P}
define_nane_rul es netnanes -type net -map { { \
1 RS
GTATRIS
{1
{""n", "bugfi x_gnat 6579 "} \
{"~N", "bugfi x_gnat 6579 "} \
{"~C", "bugfi x_gnat 6579 C'} \

P}
define_nane rul es add _net -type net -map { {{"“bugfix","net_bugfix"}} }
define_nane _rules fix _bussed nets -type net -map { { \
{"~dhad", "net _bugfi x_gnat 6579_dhad"} \
{"~sub_","net _bugfix _gnat6579 _sub "} \
b}

define_nane rules fix _ports -type net -equal ports _nets

change _nanes -rules fix DWcells
change_nanes -rul es netnanes
change_nanes -rul es add_net

change _nanes -rules fix _bussed nets
change _nanes -rules fix ports

SNUG San Jose 2004 49 The Human ECO Compiler

Random useful thoughts and suggestions about ECOs

Flow

Given the new RTL that incorporates the ECO fix, in addition to running your ECO flow, you
should always run through your normal synthesis flow (Figure 48). This gives you a known good
new top-level netlist to use for formal verification with the ECO top-level netlist. Because this
comparison is gates-to-gates it can run much faster than comparing the new RTL with the ECO
gates. Furthermore if we cannot derive an ECO fix, we already have the new netlist we need to
start fresh...

old .
logic old
RTL > synthesis m placer

old

placed&
routed

netlist

old
placed
netlist

router

L Y
N

ECO
»| ECO placed&

» flow > routed
netlist

~ equivalence

checker
Y
N
new
new ;
logic new new f\
RTL : \ lacer router placed&
synthesis m P F::giic: > routed
netlist
N

Figure 48. Run your ECO through the normal flow to enable gates-to-gates equivalence checking

With this ECO methodology we don’t care about timing, just functionality. Your incremental
place-and-route tool will have to make timing closure for you. Do you have block-level timing
constraints that work with your place-and-route tool? Do they cover both setup and hold?

Sometimes your ECO fix will not agree with your RTL fix, because the fixes are at different levels
of the design hierarchy. For example, consider a control signal needsto be inverted. The easiest
place to invert it in the RTL might be the module that receives the signal. However in the
gate-level netlist the easiest place might be to change the gate that creates the signal. This may
cause the block-level formal verification to fail, however the top-level verification will work.

Always figure out your ECO fix at the module level first. Even if you ungr oup and

conpi l e -incremental later you can still find many of the gatesin common. If an

ungr oup isfollowed by afull conpi | e then you have problems—there will be no agreement
between gate names in the module-level netlist and the newly-compiled top netlist. (Nevertheless
it still might be useful to do the module ECO fix first, because you will learn what to expect when
dissecting the top-level netlist.)

SNUG San Jose 2004 50 The Human ECO Compiler

Random useful thoughts and suggestions about ECOs

In your normal synthesis flow, changetheconpi | e_i nst ance_nane_prefi x and

conpi | e_i nstance_nane_suf f i x variablesto indicate which synthesis step you are
performing. This makes the gates easier to trace in the netlist—you can tell which ones are from
the initial compile, which are from top-level incremental compile, etc.

set conpile_instance_name_suffix ""
set conpile_instance_nanme_prefix "U'
conpil e ;# normal conpile gates have Uxxx nanes

set conpile_instance_nane_prefix "I"
conpil e -increnental ;# increnental conmpile gates naned | xxx

set conpile_instance_nane_prefix "T"

conmpile -top ;# top conpile gates naned Txxx

ungroup -all -flatten

set conpile_instance_nanme_prefix "ZzZ"

conpil e -increnent al ;# flattened i ncremental gates names Zxxx

set _fix_hold cl ocks
set conpil e_instance_name_prefix "HOLD'
compile -only design_rule ;# hold fix gates named HOLDxxX

If your flow writes out a hierarchical netlist, it is helpful to split thisfile into individual modules.
That way each module can be compared and analyzed individually—which modules have really
been changed by your ECO? Many will be textually identical. Figure 49 is a Perl script that splits
up ahierarchical netlist into separate files, one per module. You can use cat to glue them back
together (be careful to concatenate them in the right order).

#!/usr/ 1 ocal / bi n/ perl
splits a Verilog file into nultiple files, one per nodule
while (<>) {
if (/"nodule /) {
split;
($rmodul e_nanme = $_[1]) =~ s/<.*$/] ;
close(FILE) if ($filename);
$fil enane = $nodul e_nane.".v";
open (FILE, "> $filenanme") or die "Could not open file $filenane : $!'\n";
sel ect FILE;

print if ($filenane) ;

}
close(FILE) if ($filenane);

Figure 49. split_verilog Perl script

You need to be aware of your entire flow. Make sure you are using the final netlist. Was the
hierarchy modified? Was the netlist gr ouped or ungr ouped? Scan inserted? Clock tree
inserted? change_nanes, explicit or implicit? What sort of optimizations were done during
place-and-route? What netlist does your incremental place-and-route tool really need to see, to
correctly perform your ECO?

SNUG San Jose 2004 51 The Human ECO Compiler

Random useful thoughts and suggestions about ECOs

If you are using a spare cells methodology, are the spares instanced in your RTL? If so, where in
the logical hierarchy will you put them? If not, how will you run functional verification of your
RTL vs. gates? How will you place the spares [49], and where on the die? What flavors of cells
will you use, and how many spare cell kits should your design have?

Although this paper focused on functional ECOs, many more non-functional ECOs are routinely
done for hold fixing, design rule fixing, etc. Similar implementation techniques can be used for
both types of ECOs. Review the flow you may already have for these non-functional ECOs.

Fab

Consider holding back some wafers prior to metallization. You can then quickly turn around
metal-only fixes [31]. What NRE fee will your vendor require for such arespin?

If you hold back some wafers, at what fab step do you need to stop? Be careful with the first
contact layer—it might require a change if you modify your metal-1.

Bookkeeping

Every ECO must have a unique name. Thisiswhy bug tracking tools are so useful. If the bug
hasn’t been logged, don’t work on the ECO.

Whenyoudi ff - c theoldand new RTL, print out thedi f f report. Use two different
highlighter pens to mark up the differences. | use pink for the old RTL and yellow for the new.
Only highlight areas that are actually different.

After tracing your schematic in Design Vision, print it out. Better yet, save the PostScript so you
can print out copies at will. Now you can sketch potential ECO fixes right on the printed
schematic.

Get amanilafolder for each ECO. Write the ECO name on the folder tab. Keep the RTL di f f
reports, schematics, delta RTL sources, bug tracking reports, and other relevant documentation in
it.

There are many many files used to implement ECOs—you need a naming convention.

Unfortunately you won't realize all the different types of files you need until you’ve done several
ECOs...

SNUG San Jose 2004 52 The Human ECO Compiler

Random useful thoughts and suggestions about ECOs

Stupid Management Tricks

One of the stupidest management tricks isto use revision tags like bronze, silver, and gold. What
happens when you perform an ECO to the “golden” netlist? What will you call the netlist now,
gold-prime? even more golden? polished gold? 18-karat gold? platinum? What about the next
ECO? Your revision naming scheme is constraining your flow. Use numbers (or datestamps) to
refer to your design versions, and always increment the version when the design changes. Always.
Otherwise you'll be in for aworld of hurt:

Engineer One: “Here's the golden design.”

Engineer Two: “Do you mean this morning’s golden design, or last week’s golden design?’
Engineer One: “Nope, it’s the golden design that has Frank’s fix, but not the restart bug fix.”
Engineer Two: “Oh, that golden design.”

Other descriptive words to avoid include last and final. A sure-fire way to find a bug requiring an
ECO isto conclusively state “Thisisthe final netlist” and copy it into adirectory named f i nal .

If you are truly enamored of metallic names like silver and gold, then why not use the entire
periodic table? Start with hydrogen and work your way up. Then you'll get to say thingslike “We
completed the arsenic (As) netlist, and we expect to have the selenium (Se) netlist out by next
week.” | still say you should stick with integers; there’s no upper bound.

ECOs allow you to appear to meet milestones when you really haven’t. This can be useful when
dealing with customers or management. Table 50 shows some examples.

Table 50: Management Translation Table

What we say What we mean

...but there are afew pesky bugs, don’t worry,

RTL isfrozen after it'sfixed we'll still call it the golden RTL

We're not about to run synthesis again,

Synthesisis done but we're still making changes to the netlist

We're still running incremental placement

Placement is done on afew ECO cells

Timing closure is complete ...and these three ECOs won't affect it at all

We've taped out the base layers,

We've taped out the chip and we're still adding metal-only ECOs

Thisrespinisjust for timing fixes

o improve yidld ...plus 3,600 gates repairing 8 functional bugs

When your boss says these things they are Stupid Management Tricks. When you say them they
are Clever Engineering Technigues. Don't allow yourself to be fooled—remember you can’t fool
physics with a milestone chart—you aren’t done until you are done.

SNUG San Jose 2004 53 The Human ECO Compiler

Final comments

8.0 Final comments

Many trendsin the IC design world are conspiring to make this ECO flow an attractive solution
for last-minute design changes:

* The back-end flow is becoming longer, more complex, and less predictable.
* NRE costs areincreasing. Masks are expensive.

» Chipsare getting bigger. Adding afew thousand ECO gatesis no big deal.

We want to minimize the cost required for the change, where
cost = f(time, money, licenses, people)

When you don’t have enough time, just spend more of something else (i.e., money, licenses,
people). Thisiswhat engineers do—we figure out how to solve a problem with the resources at
hand.

Always expect more ECOs.
9.0 Acknowledgements

Thanks to the following people for their helpful discussions:

Pete Churchill, EdgeRate Consulting
Larry Dennison, Avici

Juergen Froessl, Synopsys

Nicholas Howorth, Intel

Steve Lamb, Synopsys

Rick Posch, Change Research Associates
Greg Squires, Blue Chip Design

Jon Stahl, Avici

Michael Stein, Paradigm Works
Erich Whitney, Axiowave Networks
Tim Wilson, Intel

Anonymous thanks to those design teams that unwittingly provided examples for this paper.
You know who you are.

As aways, a huge thank-you to Joanne Wegener of Synopsys for all her hard work.

SNUG San Jose 2004 54 The Human ECO Compiler

References

10.0 References

[1] CharlesH. Crockett, Jr. et a., “Method and apparatus for reworking printed circuit boards
using surface coating and selective removal of an electrically conductive material,” U.S.
Patent 5 615 387, March 25, 1997.

[2] Tracy Kidder, The Soul of a New Machine. Boston: Atlantic Monthly Press, 1981.

[3] Howard A. Landman, “Visualizing the Behavior of Logic Synthesis Algorithms,” SNUG
San Jose 1998.

[4] “ECO Compiler Synthesis,” Synopsys, Technology Backgrounder, April 1997.

[5] Gitanjali Meher Swamy, “Incremental Methods for Formal Verification and Logic
Synthesis,” PhD thesis, University of California at Berkeley, 1996. UMI publication
9723211. [Onlineg]. Available: http://citeseer.nj.nec.com/swamy96incremental .ntml

[6] Laurent Arditi, Gerard Berry, and Michael Kishinevsky, “Late Design Changes (ECOs) for
Sequentially Optimized High-Level Esterel Designs,” to be presented at Designing Correct
Circuits 2004, Barcelona, Spain, 27-28 March 2004.

[7] “Toolsand Technologies,” integrated system design, July 1997. [Onling]. Available: http://
www.eedesign.com/editorial/1997/tool sandtech9707.html

[8] “Synopsys Introduces First-Ever Synthesis Tool for ECOs,” RSVP, vol. 4 no. 1, pp. 36-37,
Spring 1997. Synopsys. [Onling]. Available: http://www.synopsys.com/news/pubs/rsvp/
spro7/rsvp_spr97_10.html

[9] “ECO Compiler User Guide,” Synopsys, Version 2000.11, November 2000.

[10] John Cooley, ESNUG, SNUG 00 Item 21, April 5, 2000. [Onling]. Available: http://
www.deepchip.com/posts/snug00.html#21

[11] “Tipson ECO within the Physical Synthesisflow,” Synopsys, SolvNet Doc |d 000653, April
18, 2002. [Online]. Available: http://solvnet.synopsys.com/retrieve/000653.html

[12] John Cooley, ESNUG, ESNUG 358 Item 3, August 23, 2000. [Online]. Available: http://
www.deepchip.com/posts/0358.html#3

[13] John Cooley, ESNUG, DAC 01 Item 27, July 31, 2001. [Online]. Available: http://
www.deepchip.com/items/dac01-27.html

[14] John Cooley, ESNUG, ESNUG 404 Item 11, January 8, 2003. [Online]. Available: http://
www.deepchip.com/posts/0404.html#11

[15] John Cooley, ESNUG, SNUG 03 Item 10, May 14, 2003. [Onling]. Available: http://
www.deepchip.com/items/snug03-10.html

[16] Andrey A. Nikitin, et a., “ Direct transformation of engineering change ordersto
synthesized IC chip designs,” U.S. Patent 6 651 239, November 18, 2003.

[17] Anthony D. Drumm, “Incremental logic synthesis system for efficient revision of logic
circuit designs,” U.S. Patent 5 436 849, July 25, 1995.

[18] Genichi Tanaka, “ Engineering-change method of semiconductor circuit,” U.S. Patent
6 581 199, June 17, 2003.

SNUG San Jose 2004 55 The Human ECO Compiler

http://citeseer.nj.nec.com/swamy96incremental.html
http://www.eedesign.com/editorial/1997/toolsandtech9707.html
http://www.eedesign.com/editorial/1997/toolsandtech9707.html
http://www.synopsys.com/news/pubs/rsvp/spr97/rsvp_spr97_10.html
http://www.synopsys.com/news/pubs/rsvp/spr97/rsvp_spr97_10.html
http://www.deepchip.com/posts/snug00.html#21
http://www.deepchip.com/posts/snug00.html#21
http://solvnet.synopsys.com/retrieve/000653.html
http://www.deepchip.com/posts/0358.html#3
http://www.deepchip.com/posts/0358.html#3
http://www.deepchip.com/items/dac01-27.html
http://www.deepchip.com/items/dac01-27.html
http://www.deepchip.com/posts/0404.html#11
http://www.deepchip.com/posts/0404.html#11
http://www.deepchip.com/items/snug03-10.html
http://www.deepchip.com/items/snug03-10.html

References

[19]
[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]
[28]

[29]

[30]

[31]

[32]

[33]
[34]

[35]

[36]

Mark Thomas Fox, “Methodology for ECO Compiler,” SNUG San Jose 1999.

Kandimalla Babu Rao, “ Verification of Gate level ECOs Using Compare_design,” SNUG
San Jose 1997.

John Horgans, John Pedicone, Greg Guiher, James P. Flynn, “Formal Verification:
Verification of an ECO-Intensive Hierarchical Design,” SNUG Europe 2003.

Shlomi Fish, ed. (2004, January). Computers. Software: Configuration Management: Tools.
[Online]. Available: http://dmoz.org/Computers/ Software/ Configuration_Management/
Tools/

Shawn Clayton, John Sweeney, Mark Tetreault, and Scott Sandler, “A Set of Formal
Applications,” integrated system design, November 1996. [Online]. Available: http://
www.eedesign.com/editorial/1996/systemdesign9611.html

Linas Vepstas. (2002, February). Call Center, Bug Tracking and Project Management Tools
for Linux. [Online]. Available: http://linas.org/linux/pm.html

Jacques Wong et al., “Efficient use of spare gates for post-silicon debug and enhancements,”
U.S. Patent 6 255 845, July 3, 2001.

Dennis Lee, “Method and apparatus for quick and reliable design modification on silicon,”
U.S. Patent 5 696 943, December 9, 1997.

Mark E. Masterset al., “Integrated circuit wiring,” U.S. Patent 6 307 162, October 23, 2001.

Anthony Correale, “Method for providing engineering changesto LSl PLAS,” U.S. Patent
4 880 754, November 14, 19809.

Doug Dreibelbis and Sheila Franz, “The Hidden Benefits of IBM ASICs.Part 1,
MicroNews, vol. 6 no. 3, pp. 1-6, August 2000. IBM Microelectronics. [Online]. Available:
http://www.chips.ibm.com/micronews

Elliot L. Gould, et a., “Method of combining gate array and standard cell circuitson a
common semiconductor chip,” U.S. Patent 4 786 613, November 22, 1988.

Robert L. Payne, “Cell-based integrated circuit design repair using gate array repair cells,”
U.S. Patent 5 959 905, September 28, 1999.

“SR40 0.095-um High-Speed Copper Standard Cell/Gate Array ASIC,” Texas Instruments,
Literature Number SRST 142, March 4, 2002.

Jon Stahl, personal communication.

John Gregg, Ones and Zeros. Understanding Boolean Algebra, Digital Circuits, and the
Logic of Sets. New York: |EEE Press, 1998.

Clifford E. Cummings, Don Mills, Steve Golson, “Asynchronous & Synchronous Reset
Design Techniques - Part Deux,” SNUG Boston 2003. [Online]. Available: http://
www.trilobyte.com/papers/#snug03_boston

“Achieving Deterministic Results From Design Compiler,” Synopsys, SolvNet Doc Id
006062, June 2, 2003. [Online]. Available: http://solvnet.synopsys.com/retrieve/
006062.html

SNUG San Jose 2004 56 The Human ECO Compiler

http://dmoz.org/Computers/Software/Configuration_Management/Tools/
http://dmoz.org/Computers/Software/Configuration_Management/Tools/
http://www.eedesign.com/editorial/1996/systemdesign9611.html
http://www.eedesign.com/editorial/1996/systemdesign9611.html
http://linas.org/linux/pm.html
http://www.chips.ibm.com/micronews
http://www.trilobyte.com/papers/#snug03_boston
http://www.trilobyte.com/papers/#snug03_boston
http://solvnet.synopsys.com/retrieve/006062.html
http://solvnet.synopsys.com/retrieve/006062.html

References

[37] “Converting areport_test -scan_path to ascan,” Synopsys, SolvNet Doc Id 900774, June 26,
1998. [Online]. Available: http://solvnet.synopsys.com/retrieve/900774.html

[38] “Design with Test Compiler Test Logic,” Synopsys, SolvNet Doc Id 903425, August 11,
1998. [Onling]. Available: http://solvnet.synopsys.com/retrieve/903425.html

[39] “Decrease Number of Net Names Changed by ECO_Compiler,” Synopsys, SolvNet Doc Id
901659, September 25, 1998. [Online]. Available: http://solvnet.synopsys.com/retrieve/
901659.html

[40] “Control Port Name With eco_implement,” Synopsys, SolvNet Doc |d 903427, August 18,
1998. [Online]. Available: http://solvnet.synopsys.com/retrieve/903427.html

[41] Wilson Snyder. (2004). Verilog-Perl. [Online]. Available: http://www.veripool.com/verilog-
perl.html

[42] “Using Formality To Perform Exact Structura Comparison of Gate-level Netlists,”
Synopsys, SolvNet Doc Id 004400, June 16, 2003. [Online]. Available: http://
solvnet.synopsys.com/retrieve/004400.html

[43] Steve Golson, “ State machine design techniques for Verilog and VHDL,” SNUG San Jose
1994. [Onling]. Available: http://www.trilobyte.com/papers/#snug94

[44] “What isDC Ultra?’” Synopsys, SolvNet Doc 1d 901707, August 19, 2002. [Onling].
Available: http://solvnet.synopsys.com/retrieve/901707.html

[45] “Using gate array backfill as spare cells,” Synopsys, SolvNet Doc Id 901522, December 11,
1997. [Online]. Available: http://solvnet.synopsys.com/retrieve/901522.htm

[46] JianLi et al., “Circuit edit interconnect structure through the backside of an integrated
circuit die,” U.S. Patent 6 376 919, April 23, 2002.

[47] Richard H. Livengood, “Method and apparatus providing acircuit edit structure through the
back side of an integrated circuit die,” U.S. Patent 6 309 897, October 30, 2001.

[48] Richard H. Livengood et al., “Method for performing a circuit edit through the back side of
an integrated circuit die,” U.S. Patent 5 904 486, May 18, 1999.

[49] “Methods for Handling Spare Cell Placement in Physical Compiler,” Synopsys, SolvNet
Doc 1d 900142, September 17, 2003. [Online]. Available: http://solvnet.synopsys.com/
retrieve/900142.html

Additional Bibliography

David A. Morgan, “RTL annotation tool for layout induced netlist changes,” U.S. Patent
6 530 073, March 4, 2003.

Kuochun Lee, Tsung-Yen Chen, “Automatic engineering change order methodology,” U.S. Patent
6 453 454, September 17, 2002.

Chenmin Zhang, “Method and system for improving the performance of a circuit design
verification tool,” U.S. Patent 6 226 777, May 1, 2001.

SNUG San Jose 2004 57 The Human ECO Compiler

http://solvnet.synopsys.com/retrieve/900774.html
http://solvnet.synopsys.com/retrieve/903425.html
http://solvnet.synopsys.com/retrieve/901659.html
http://solvnet.synopsys.com/retrieve/901659.html
http://solvnet.synopsys.com/retrieve/903427.html
http://www.veripool.com/verilog-perl.html
http://www.veripool.com/verilog-perl.html
http://solvnet.synopsys.com/retrieve/004400.html
http://solvnet.synopsys.com/retrieve/004400.html
http://www.trilobyte.com/papers/#snug94
http://solvnet.synopsys.com/retrieve/901707.html
http://solvnet.synopsys.com/retrieve/901522.html
http://solvnet.synopsys.com/retrieve/900142.html
http://solvnet.synopsys.com/retrieve/900142.html

	ABSTRACT
	1.0 Introduction—What is an ECO?
	1.1 Complexity
	Mask complexity
	Floorplan complexity
	Design complexity
	Combinational logic complexity
	Sequential logic complexity
	Size complexity

	2.0 Purpose—Why do an ECO?
	3.0 Flow—Who will implement the ECO?
	4.0 Tools—What you need to implement an ECO
	4.1 Things to read
	4.2 Software
	4.3 Transistors
	4.4 Vocabulary

	5.0 Basic flow to apply an ECO to a leaf module
	Step�1. Use Formality to confirm equivalence of old RTL and old netlist
	Step�2. diff the old RTL and new RTL
	Step�3. Use Formality to confirm differences between old netlist and new RTL
	Step�4. Explore the old netlist with Design Vision and Formality
	Step�5. Design a logic fix that implements the ECO in the old netlist
	Step�6. Modify the old netlist to make the ECO netlist
	Step�7. Use Formality to confirm the new RTL agrees with the ECO netlist

	6.0 Advanced topics
	6.1 Use Design Compiler netlist editing commands to implement the fix
	6.2 Use Design Compiler to synthesize the ECO logic
	Step�6A. Write a delta RTL module that describes the ECO logic
	Step�7A. Edit this delta RTL into the old netlist to create a hybrid gates+RTL ECO netlist
	Step�8A. Use Formality to confirm the new RTL agrees with this hybrid ECO netlist
	Step�9A. Synthesize the delta RTL module
	Step�10A. Edit the resulting delta gates into the old netlist to create an ECO netlist
	Step�11A. Use Formality to confirm the new RTL agrees with the ECO netlist

	6.3 Adding ports to a subdesign
	6.4 More on netlist dissection
	6.5 Laws of Boolean algebra
	6.6 Related logic sometimes has related names
	6.7 More ways to design the fix
	6.8 Flopwhacking: How to use a spare or redundant flop
	6.9 ECO considerations for hierarchical designs
	6.10 Repeatability
	6.11 Netlist equivalence and how to fix it

	7.0 Random useful thoughts and suggestions about ECOs
	Tools
	Design
	Flow
	Fab
	Bookkeeping
	Stupid Management Tricks

	8.0 Final comments
	9.0 Acknowledgements
	10.0 References
	Additional Bibliography

