Consistent Timing Constraints with PrimeTime

Steve Golson

Trilobyte Systems
388 Stearns Street
Carlisle MA 01741
Phone: +1.978.369.9669
Fax: +1.978.371.9964
Email: sgolson@trilobyte.com
http://www.trilobyte.com

ABSTRACT

Physical implementation tools are usuailiying-driven They requirgiming constraintgor
reliable, repeatable, and successful operation. Generating and verifying these constraints is a
familiar yet sometimes tedious task for the physical implementation engineer.

We introduce the idea @bnsistent timing constrainesxd show how PrimeTime can be used to
create and manage timing constraint files needed for all other implementation tools, from
synthesis to place-and-route to final chip finishing.

Introduction

1.0 Introduction

Physical implementatiomeans transforming an abstract RTL description of an integrated circuit
into a physically-realizable representation of the same circuit. The primary rule for physical
implementation engineers and their toolB@not change the functionalitWe go to great

lengths to maintain and verify the functionality of our designs.

The second rule iMeet the specified timing constrainfghese constraints are defined in taga
sheetor specificatiorfor the design, in tabular and graphical form. But how are these constraints
translated into a format usable by physical implementation tools?

This paper will delve into the problem of constraint generation for physical implementation tools.
We introduce the concept obnsistent timing constraintend discuss why this is critically

important. We will outline a methodology relying on PrimeTime to generate and manage timing
constraints, and to guarantee the consistency of your constraints, across all stages of the flow and
all levels of hierarchy.

2.0 Problems: Management and Consistency

Many physical implementation tools are timing driven. A representative flow might include the
following steps (not necessarily in this order), each of which requires timing constraints for
proper operation:

automatic test pattern generation (ATPG)
cell placement

clock tree synthesis (CTS)
design-for-manufacturing/design-for-yield (DFM/DFY) tools
detail router

floorplanning

gate-level power analysis

global router

RTL power analysis

scan insertion

static timing analysis

synthesis from RTL to gate-level netlist
voltage drop analysis

These timing driven tools must haserrectandcompleteconstraintsCorrectmeans the
constraints used by the tool agree with the chip spempletemeans you haven't left anything
out—all timing paths have a constraint.

So you1 might ask, what'’s the big deal? Just create a file, “the SDC file”, edit it by hand, and feed
it to all the tools.

1. Or your manager.

SNUG San Jose 2009 2 Consistent Timing Constraints with PrimeTime

Problems: Management and Consistency

Unfortunately this doesn’t work, due to differences amongst the tools:

File formats Although most tools can use Synopsys Design Constraints (SDC) format [1], some
use Tcl scriptsr(otthe same as SDC), and a few require custom formats.

VersionsNew commands are periodically added to the SDC spec. Your various tools might or
might not support the latest commands.

Netlist statusAs the design proceeds through the flow, the timing constraints change. For
example, prior to clock tree insertion the clocks are modeled as ideal nets, with specified network
latency and uncertainty to model skew. After CTS the clocks can be propagated and the
uncertainty is removed. Another example: scan clocks and I/Os must be constrained, but only
after scan insertion. Another example: synthesis timing constraints cannot use library-specific pin
names. Another example: synthesis constraints may be more conservative than signoff constraints
(overconstrained synthesis).

FeaturesMulti-corner multi-mode (MCMM) is the big new feature for implementation and
analysis tools. Many tools do not have this capability yet.

SNUG San Jose 2009 3 Consistent Timing Constraints with PrimeTime

Problems: Management and Consistency

Figure 1 shows a portion of a typical flow.

RTL

_ Tcl timing
synthesis € constraints

'

placement <« SDC

'

global route [€— SDC

'

CTS <« sDC

'

detail route < SDC

PrimeTime

signoff

T

Figure 1. Typical flow

SNUG San Jose 2009 4 Consistent Timing Constraints with PrimeTime

Define: Consistency

In summary, we have many tools used at various stages of the physical implementation flow. Each
tool may require its own unique timing constraint file(s).

Problem #1: How shall wemanagethis multiplicity of files?

Problem #2: How can we make sure that each tool in turn is working on the same critical path?
How do we ensureonsistency

3.0 Define: Consistency

Let’s consider the second problem. As the design proceeds along the flow, each timing-driven tool
in turn uses its particular constraints and internal timing engine. We've already shown that the
constraint files will most likely not bhientical However the timing constraints must be

consistent

For example, after synthesis completes, run a timing report showing the critical paths in each
clock group (path group). Now, moving along your flow, read the same netlist into the placement
tool, and apply (possibly different!) timing constraints. Prior to doing anything with the placer,
run a timing report. Compare with the synthesizer timing report. Do you see the same critical
paths? Do you get the same slack?

This is important because we want every tool to be optimizing the design toward the same goal.

We defineconsistencs follows:

Timing-driven tools haveonsistent timing constraint§ given the same netlist,
they identify the same critical path for a given path group.

Here is a more practical definition. Consider timing-driven tools A and B. We say they have
consistent timing constrainitfor the same netlist

1. Fortool A, for each path group, report the critical path.

2. Now in tool B, report the identical path (startpoint, endpoint, through points, clocks).

3. Tool B path must have same constraints (e.g., clock period, clock latency, multicycle path,
input/output delay).

4. Tool B must report the same slack.

The converse must also be true (swap A and B).

Note you will have small timing differences due to different timing engines in the tools! This
difference is hard to quantify; you must learn from experience on your particular design.
Generally the differences are no more than a few percent of the total delay on the path. So let’s
modify our definition to read

4. Tool B must report the same slack, within some reasonable margin.

SNUG San Jose 2009 5 Consistent Timing Constraints with PrimeTime

Solution #2: Use PrimeTime throughout the flow

Note it's possible for some clock groups to be only in one tool. This depends on the multi-clock,
multi-corner, multi-mode capabilities of the tools.

Note this only works for tools adjacent to each other in the flow. As the design progresses down
the flow, the critical path and timings will most likely change.

4.0 Solution #2: Use PrimeTime throughout the flow

PrimeTime is normally used as a signoff tool, at the end of the flow. However your PrimeTime
signoff Tcl scripts can be easily modified so they can be used at any point earlier in the flow. This
allows us to use PrimeTime as the reference tool, and prove that each implementation tool in the
flow is consistentith the signoff constraints.

Note we are not looking at the final timing reports from the signoff netlist—rather we are running
PrimeTime on the intermediate netlists.

It is a straightforward task to modify signoff PrimeTime Tcl constraints such that they can be used
at other points in the flow. There are a small number of switches required:

FIX_HFEN (true or false): Early in the flow it is common for the synthesis tool to treat high fanout
nets (HFNSs) as ideal nets. The place&route tool is then used to build topologically-aware buffer
trees. Also need integer variatléN_FANOUT_THRESHOLD such that any net with fanout
greater than this is given ideal timing.

PARASITICS_FILE (specified or not): If this file (or files) are specified then parasitics are
annotated onto the design. Otherwise a wireload model is used. Note this could be estimated
parasitics from Design Compiler Topographical or actual post-route extracted parasitics.

PROPAGATE_CLOCKS (true or false): Prior to clock tree synthesis (CTS) all clock nets are
treated as ideal nets with specified network latency, and additional uncertainty is added to model
clock skew. After CTS the clocks are propagated with actual skew.

ENABLE_SI (true or false): Crosstalk analysis is only needed for final signoff, otherwise
disabled.

Netlist status (automatically determined): As mentioned before, there may be constraint changes
due to netlist status, for example whether or not scan has been inserted. Rather than add additional
switches, we can often determine the netlist status using various PrimeTime commands. For
example it is straightforward to determine whether or not the scan clock port exists? and does it
have a net attached to it? If not we assume scan is not inserted, thus scan clocks and associated
constraints may be skipped.

Tcl code examples using these switches are given in the Appendix starting on page 13.

SNUG San Jose 2009 6 Consistent Timing Constraints with PrimeTime

Solution #1: Use PrimeTime to generate all needed constraint files

5.0 Solution #1: Use PrimeTime to generate all needed constraint files

Now the way is clear to solve the first problem. We've got PrimeTime running as the reference
timing tool, to ensure consistency along the flow. Now we camwrtise sdc to generate

required files for the other tools. If necessary, the generated SDC is post-processed with simple
scripts (e.g., Perl).

Actually no, it’s not that simple, because we still have the tool differences outlined earlier. But it’s
not too hard to make this work, in an automated, flexible, consistent way.

Versions Assume your place&route tool needs SDC version 1.4. Then do
write_sdc filename.sdc -nosplit -version 1.4
PrimeTime will automatically convert newer constructs into compatible older commands. For

example, clocks defined witet_clock groups will be converted to appropriate
set_false_path commands.

FeaturesDepending on the capabilities of the target tool we might need to remove or relax some
of the PrimeTime constraints. For example, consider a tool that does not support multi-clock
constraints (i.e., more than one clock object on a given net or pin). In this case, remove the

appropriate clocks prior to writing out the sbc

deactivate_clocks [get_clocks scan_clK]
remove_clock [get_clocks scan_clK]
write_sdc filename.sdc -nosplit

Note this does not affect the main PrimeTime analysis scripts.

Netlist statusFor some target tools we must postprocess the generated SDC. Consider the
synthesis constraints used by Design Compiler. All other tools can assume a gate-level netlist, but
synthesis starts with RTL. So an SDC construct like

set_multicycle_path 2 -from [get_pins blockA/myflop/CP]

will not work. The flop has not been mapped; the pin does not exist. What we need instead is
set_multicycle_path 2 -from [get_cells blockA/myflop]

A simple Perl script can convert the gate-level SDC constraint file into an RTL Tcl constraint file
suitable for Design Compiler. See the example in Appendix section A.6 on page 20.

File formats Sometimes a post-processed SDC is not sufficient. In these cases you may need to
write a custom PrimeTime reporting script that generates the proper file. For example, you may
want to analyze the propagated clock latencies from a post-route netlist, calculate an equivalent

2. Thedeactivate_clocks andactivate_clocks procs are available on SolvNet [3].

SNUG San Jose 2009 7 Consistent Timing Constraints with PrimeTime

Solution #1: Use PrimeTime to generate all needed constraint files

ideal network latency and uncertainty, then write these values into a Tcl script for use by
PrimeTime or in future RTL compile runs with Design Compiler. See the example in Appendix
section A.7 on page 22.

Figure 2 shows our typical flow, now using PrimeTime to generate consistent constraints for
various tools.

clock PrimeTime <
RTL latencies analysis
T ——
_ Tel timing write_sdc PrimeTime ‘
synthesis < constraints analysis
T T ——
placement <] SbC
write_sdc imeTi
global route [Sbe — PrimeTime *
analysis
T -
1S SDC write_sdc PrimeTime <
analysis
T T ——
detail route] SDC write _sde PrimeTime ¢
analysis
-

T

Figure 2. Typical flow using PrimeTime to generate consistent constraints

SNUG San Jose 2009 8 Consistent Timing Constraints with PrimeTime

Problem: SDC command interpretation

6.0 Problem: SDC command interpretation

The SDC specification [1] defines only syntax. It does not define the behavior of the commands.
In particular it does not specify how to interpret ambiguous sequences of commands. As a result
there may be differences in how the various EDA tools interpret the SDC commands. For
example, consider the following three SDC commands:

set_multicycle_path 2 -from [get_clocks clkA]
set_multicycle_path 3 -from [get_clocks clkA] -to [get_clocks clkB]
set_multicycle_path 4 -to [get_clocks clkB]

If I have a path from clkA to clkB, what is the correct multicycle path setting to use? Even if all
tools are using the same version of SDC, these details of implementation and interpretation are
not specified by the SDC spec. Your tools may implement this differently.

PrimeTime has a specific behavior that is discussed in the documentation for the various path
exception commands. Here is an excerpt fronsétemulticycle path manpage:

Theset_multicycle_path command is a point-to-point timing exception command.
The command can override the default single-cycle timing relationship for one or more timing
paths. Other point-to-point timing exception commands incéetlemax_delay
set_min_delay , andset_false path . False path information always takes prece-
dence over multicycle path information. A specsgt_max_delay orset_min_delay
command overrides a genesat_multicycle_path command.

The more general commands apply to more than one path;-@itmer or-to (but not

both), or clocks are used in the specification. Within a given point-to-point exception com-
mand, the more specific command overrides the more general. The following lists commands
from highest to lowest precedence (more specific to more general):

1. set_multicycle_path -from pin-to pin

2. set_multicycle_path -from pin-to clock
3. set_multicycle_path -from pin

4. set_multicycle_path -from clock-to pin
5. set_multicycle_path -to pin

6. set_multicycle path -from clock-to clock
7. set_multicycle_path -from clock

8. set_multicycle_path -to clock

Do your other EDA tools interpret these commands in the same way? If not, how will you manage
this lack of consistency? Perhaps the discrepancies are in noncritical paths. Perhaps you can
rewrite the exceptions so both tools interpret them the same way. It may be helpful to define
special clock objects on just the clock pins of the affected flops, then use these clock objects to
define the path exceptions.

SNUG San Jose 2009 9 Consistent Timing Constraints with PrimeTime

Problem: Hierarchy and budgeting

7.0 Problem: Hierarchy and budgeting

Until now we have assumed all tools worked on the full chip. However for today’s large designs it
is common for many tools to operate on just a subset of your chip. These block-level tools require
block-level timing constraints.

Nevertheless PrimeTime will be used for final full-chip signoff. In fact PrimeTime might be the
only tool in the flow that looks at the entire chip. We still want to use our full-chip PrimeTime
constraints to generate the files needed for the other block-level implementation tools.

So now we have another dimension to the problem of consistency. In addition to constraints that
are consistent along the flow, we need constraints that are consistent across the hierarchy. We
modify our definition of consistency as follows. Consider timing-driven tools A looking at a
hierarchical block, and tool B looking at full-chip. We say they have consistent timing constraints
if for the same netlist

1. For tool A, for each path group in the block, report the critical path.

2. Now in tool B, report the identical path (startpoint, endpoint, through points, clocks) at the
full-chip level. If the path found in 1. starts and/or ends on a port of the block, then this port
becomes athrough pin at the full-chip level.

3. Tool B full-chip path must have same constraints (e.g., clock period, clock latency, multicycle
path, input/output delay).

4. Tool B must report the same slack, within some reasonable margin.

The converse must also be true (swap A and B). Again we note it's possible for some clock groups
to be only in one tool. This depends on the multi-clock, multi-corner, multi-mode capabilities of
the tools.

Creating consistent constraints across the hierarchy is a difficult problem. Furthermore, we must
maintain these constraints in an automated fashion. As the design changes, and full-chip
constraints are modified, the block-level constraints must be automatically updated. This is called
budgeting

Some floorplanning tools provide budgeting capabilities, but they are often only useful early in
the design process, in an interactive and exploratory fashion. Thus these tools can help when
putting together an initigdrototype flowbut cannot support@roduction flowlater in the design
process.

Even if your budgeting tool can be fully automated and used throughout the design process, many
such tools only budget max delays (setup constraints). However the min delays (hold constraints)
are critical as well, perhaps even more important. If only block-level implementation tools are
used, then hold fixing must be done at the block level. This only works if we have reliable and
consistent min delay constraints.

SNUG San Jose 2009 10 Consistent Timing Constraints with PrimeTime

Problem: Hierarchy and promotion

Another budgeting issue is that often some blocks are finished early and must be “locked down”
prior to completion of the rest of the chip. The timing of these blocks is now fixed and should not
be allocated during budgeting.

To avoid this difficult budgeting problem, oftelefault timing budgetare used at the block level.
Block-level path groups are created for each type of possible path: flop-to-flop, input-to-flop, flop-
to-output, and input-to-output (or passthrough). Each path group can then be given default
reasonable timing constraints. This greatly simplifies the constraint generation problem, and
supports automation, but sacrific@ssistency

We can have default min delay budgets as well. This allows block-level hold fixing to be
implemented in an automated way. However often these are very conservative hold constraints,
and we end up doing much more hold fixing than is actually necessary. These unnecessary delay
elements can waste significant extra area. Because the full-chip signoff timing passes the min
delay checks, the area cost of these extra delay elements can be overlooked. To avoid this “silent
killer” watch for excessive amount of positive min delay slack at the full-chip level, and keep

track of the number of delay buffers inserted by your hold fixing tool.

Another typical problem with default timing budgets is the misprediction of clock latencies. This
manifests itself after CTS when clock propagation is enabled. Block-level timing analysis will
suddenly show failures on input-to-flop and flop-to-output paths, because the ideal clock latency
used forset_input_delay andset_output_delay no longer agrees with the actual
propagated clocks. This can be particularly bad with min delays and hold fixing. Sometimes users
will go to great lengths to modify the block-level input and output delays timings after CTS, but
the problem is actually due to incorrect clock latencies.

Perhaps a hybrid approach would work here. Default block-level budgets can specify input and
output delays, but use full-chip postroute PrimeTime analysis to extract ideal clock latencies (min
and max) and feed this information back to earlier block-level tools in the flow. After several
iterations the design should stabilize and all tools at all levels of hierarchy will see the proper
clock latencies in a consistent manner. See the Appendix for a PrimeTime script that extracts ideal
clock latencies from postroute propagated clock networks.

Generating and maintaining block-level timing constraints is a huge data management problem.
Do not underestimate the difficulty of this task.

8.0 Problem: Hierarchy and promotion

Sometimes we need to take block-level constraints and promote them upwards to be used at the
full-chip level. Consider an IP block that will be part of our chip. Often such blocks are supplied
with path exceptions: multicycle paths and false paths defined in an SDC file. Your full-chip
PrimeTime scripts may be able to read these directly after executing an appropriate
current_instance command. You might need to do some simple processing to these files
prior to reading them in [2].

SNUG San Jose 2009 11 Consistent Timing Constraints with PrimeTime

Summary and Conclusions

Consider a chip that contains multiple identical IP blocks (say, several copies of a CPU or 10
interface). These blocks could easily have different block-level timing exceptions. They may be
operating in different modes, or even at different voltages. Your methodology must support this—
do not assume that “identical” blocks will have identical timing constraints.

9.0 Summary and Conclusions

Is this methodology a lot of work to implement? Yes, but once written and in place, the
automation works beautifully. Also you can re-use much of this infrastructure on future projects;
the required scripts are not design-specific.

Consider the alternative. It is possible to maintain all timing constraint files for all the tools by
hand. In the early stages of a design project this is often the solution. It's easy at first, but soon as
more tools are added and as the timing constraints grow in complexity, this solution quickly
becomes untenable.

Our goal instead is a solution that is

* automated: generate required files with no extra hand-editing.

» flexible: new tools can be added easily.

e consistent: constraints are consistent along the flow and across hierarchy.

We want repeatable, reliable results from our tools. This can only happen if yocohaistent
constraints. If one step in the flow has incorrect or incompatible constraints then the timing of

your design will likely be irrepairably damaged, requiring much hand-fixing and tweaking. You
cannot lie to your tools and expect useful results.

Also this methodology allows us to perform static timing analysis at various stages of the flow:
post-synthesis, post-scan insertion, post-placement, post-route, post-CTS, etc.

In summary, we wish to manually edit and maintain the chip constrairiseplace foronetool:
full-chip PrimeTime Tcl scripts. All other required files can be automatically generated.

10.0 Acknowledgements
Many thanks to my reviewer Mark Sprague of AMD for his observations, discussions, and endless

patience. Thanks to Jerry Frenkil of Sequence Design for pointing out yet more tools that require
timing constraints.

SNUG San Jose 2009 12 Consistent Timing Constraints with PrimeTime

References

11.0 References

[1] “Synopsys Design Constraints (SDC).” [Online]. Availabiiép://www.synopsys.com/
Community/Interoperability/Pages/TapinSDC.aspx

[2] “Reusing module exceptions at the chip level,” Synopsys, SolvNet Doc Id 901542, June 11,
2003. [Online]. Availablehttp://solvnet.synopsys.com/retrieve/901542 .html

[3] “Incrementally adding/removing active clocks in PrimeTime,” Synopsys, SolvNet Doc Id
010735, February 13, 2004. [Online]. Availaliié&p://solvnet.synopsys.com/retrieve/
010735.html

A.0 Appendix

Here are various interesting code fragments for use with techniques outlined in this paper.

A.1 Importing environment variables

This Tcl command will import all UNIX environment variables and convert them into Tcl
variables with the same name. This is most useful when placed at the beginning of your local
.Synopsys_pt.setup file. Environment variables can now be easily used to transmit options
and filenames into your PrimeTime scripts.

get environment variables into Tcl variables
foreach {name value} [array get env] { eval set $name \{$value\} ; }
catch {unset name value}

SNUG San Jose 2009 13 Consistent Timing Constraints with PrimeTime

FIX_HFN

A.2 FIX_HFN

When true, FIX_HFN will cause high fanout nets to be given ideal timing. Such nets are often
treated as ideal during synthesis, with the intention that a more physically-aware tool later in the
flow can build a better buffer tree. Running PrimeTime analysis on such a netlist requires these
nets to be given ideal timing. First define a proc so we can use this in multiple scripts

proc make_hfn_timing_ideal {HFN_FANOUT_THRESHOLD} {

set all_nets [get_net -hier -top_net_of_hierarchical_group]
set total_high_fanout_nets 0

echo -n “Searching [sizeof_collection $all_nets] nets “
echo “looking for fanouts > $HFN_FANOUT_THRESHOLD”

foreach_in_collection the_net $all_nets {

set fanout [sizeof_collection \
[filter \
[get_pins -quiet -leaf -of_objects $the_net] \
“pin_direction!=out"]]

if {$fanout > $HFN_FANOUT _THRESHOLD} {

if {[regexp {*Logic[01]*} [get_attribute $the_net base_name][} {
this is a tie-off net, so no need to change it
continue

}

find all the pins on the net
set all_pins [get_pins -leaf -of_objects $the_net]
find all the pins driving the net
set driver_pins [filter \
[get_pins -quiet -leaf -of_objects $the_net] \
“pin_direction==out”]
find all the ports driving the net
set driver_ports [filter \
[get_ports -quiet -of_objects $the_net] \
“port_direction==in"]
report the drivers
foreach_in_collection the_pin $driver_pins {
echo -n “Setting Ideal Net on [get_object_name $the_net] with fanout $fanout”
echo “ driven by pin [get_attribute $the_pin full_name]”
set_ideal_network -no_propagate $driver_pins
}
foreach_in_collection the_port $driver_ports {
echo -n “Setting Ideal Net on [get_object_name $the_net] with fanout $fanout”
echo “ driven by port [get_attribute $the_port full_name]”
set_ideal_network -no_propagate $the_port

incr total_high_fanout_nets

}

echo “Fixed $total_high_fanout_nets nets with fanouts > $HFN_FANOUT_THRESHOLD"
}

SNUG San Jose 2009 14 Consistent Timing Constraints with PrimeTime

FIX_HFN

and now you can invoke this in your analysis scripts

fix high-fanout nets
if {SFIX_HFN} {

make_hfn_timing_ideal $HFN_FANOUT_THRESHOLD
}

The HFN_FANOUT_THRESHOLD parameter defines the cutoff. This should agree with the
value used in the synthesis scripts to control which nets are idealized during synthesis.

SNUG San Jose 2009 15 Consistent Timing Constraints with PrimeTime

PARASITICS_FILE

A.3 PARASITICS_FILE

Here is a simple PrimeTime Tcl proc to read a parasitics file. It determines the type of file by
parsing the file name (SDF, SPEF, SBPF). Note this assumes a full-chip extraction; it is common
to have more than one parasitics file corresponding to different hierarchical blocks. Adapting this
procedure to such a complex scheme is left as an exercise.

proc read_parasitics_file {parasitics_file} {

if {! [file exists ${parasitics_file}]} {
return

}

if {[file extension $parasitics_file] == {.sdf}} {
this is an SDF file, so read it in and return
echo Information: read_sdf ${parasitics_file}
read_sdf ${parasitics_file}
return

}

if $::ENABLE_SI {

set si_args “-keep_capacitive_coupling”
}else {

set si_args

}

if {[file extension $parasitics_file] == {.sbpf}} {
set type_args “-format SBPF”
}else {
must be SPEF, so pick the right triplet value
switch -regexp $::CORNER {
{SLOW} {settype_args “triplet_type max” ; }
{FAST} {settype_args “-triplet_type min”;}
{TYPICAL} { set type_args “-triplet_type typ”; }
default {settype_args ““;}
}
}

echo Information: read_parasitics ${si_args} ${type_args} -quiet ${parasitics_file}
eval read_parasitics ${si_args} ${type_args} -quiet ${parasitics_file}
see what nets have not been annotated

redirect ${::REPORT_DIR}/parasitics_not_annotated.rpt {
report_annotated_parasitics -list_not_annotated -max_nets 10000

}
}

The proc requires top-level variables REPORT_DIR, ENABLE_SI and CORNER.

SNUG San Jose 2009 16 Consistent Timing Constraints with PrimeTime

PROPAGATE_CLOCKS

A.4 PROPAGATE_CLOCKS

When true, PROPAGATE_CLOCKS causes all real clocks to be propagated. After clock tree
synthesis has been performed, for correct timing you must propagate the actual clock latencies.
The assumption is that ideal clock latencies have been set earlier in the analysis scripts, and we
now selectively remove them.

propagate the appropriate clocks

if {SPROPAGATE_CLOCKS} {

propagate all real clocks

make_clocks_propagated [get_clocks -filter {defined(sources)}]

set timing_remove_clock_reconvergence_pessimism true
}else {

no clocks are propagated

set_clock_transition 0 on real clocks

make_clocks_ideal [get_clocks -filter {defined(sources)}]

}

list_ideal_clocks
list_propagated_clocks

SNUG San Jose 2009 17 Consistent Timing Constraints with PrimeTime

PROPAGATE_CLOCKS

Here are the procedures:

#H.

ks

make clocks propagated
#

H

proc make_clocks_propagated { {clocks “} } {

if {[string match “* $clocks]} {
set clocks [get_clocks *]

}

We must remove latency from all the possible places it could be defined.
Clock latency can be defined on a clock, pin, or port.

Thus we need to find all pins/ports in the transitive fanout of each clock.
We would like to do [get_attribute $the_clock clock_network_pins],

but that causes an implicit update_timing,

so instead use all_fanout which only needs a mini-update.

First find all the fanouts for all the clocks.

If you do the remove_clock_latency here as well then every time through

the loop you'll do another update, because the previous clock changed

the timing by doing its own remove_clock_latency and set_propagated_clock.

foreach_in_collection the_clock $clocks {
set clock_name [get_object_name $the_clock]

set fanout($clock_name) \
[all_fanout -flat -from [get_attribute $the_clock sources]]

}

Now make the clocks propagated

foreach_in_collection the_clock $clocks {
set clock_name [get_object_name $the_clock]

remove_clock_latency -clock $clock_name $fanout($clock_name)
remove_clock_latency $fanout($clock_name)
remove_clock_latency $the_clock

remove source latency on generated clocks only
if {[string match {true} [get_attribute $the_clock is_generated]]} {
remove_clock_latency -source $the_clock

}

set_propagated_clock $the_clock
}
}

#.

H

make clocks ideal
H

H

proc make_clocks_ideal { {clocks “} } {

if {[string match “* $clocks]} {
set clocks [get_clocks *]

}

SNUG San Jose 2009 18 Consistent Timing Constraints with PrimeTime

PROPAGATE_CLOCKS

ideal clocks get O transition
set_clock_transition 0 $clocks

—

report propagated clocks

H H

proc get_propagated_clocks {args} {
return [get_clocks -quiet -filter propagated_clock==true $args]

}

proc get_ideal_clocks {args} {
return [get_clocks -quiet -filter propagated_clock==false $args]

}

proc list_propagated_clocks {} {
set the_list {}
foreach_in_collection dumb [get_propagated_clocks *] {
lappend the_list [get_attribute $dumb full_name]
}
if {$the_list 1= {3} {
echo “Information: propagated clocks are:”
foreach i [Isort -dictionary $the_list] {
echo “\t $i”
}
}else {
echo “Information: No propagated clocks.”
}
}

proc list_ideal_clocks {} {

set the_list {}

foreach_in_collection dumb [get_ideal_clocks *] {
lappend the_list [get_attribute $dumb full_name]

}

if {$the_list 1= {3} {
echo “Information: ideal (not propagated) clocks are:”
foreach i [Isort -dictionary $the_list] {

echo “\t $i”
}
}else {
echo “Information: No ideal clocks. All clocks are propagated.”
}
}
The useful procedureteactivate_clocks andactivate_clocks are available for

download from SolvNet [3].

SNUG San Jose 2009 19 Consistent Timing Constraints with PrimeTime

ENABLE_SI

A.5 ENABLE_SI

When true, ENABLE_SI causes signal integrity (crosstalk) analysis to be turned on. This variable
is used in two places in the analysis script. First at the start of the script to ensure the license is
available

if SENABLE_SI {
get_license PrimeTime-SI
if {{get_message_info -occur SEC-50]} {
echo Error: could not get PrimeTime-SI license
exit 1

}
}

then just before the maupdate_timing is performed we actually enable signal integrity
analysis.

if SENABLE_SI {
echo Information: enabling PrimeTime-SI analysis
set si_enable_analysis true

}

A.6 Converting SDC to Design Compiler Tcl constraints

This Perl script converts an SDC generated by PrimeWnie_sdc into a Design Compiler

Tcl constraint file suitable for RTL synthesis. Path exceptions in the SDC are expressed using
library-specific pin names which only exist after synthesis. For pre-synthesis constraints these are
converted to cell names.

You will probably need to modify this to use the pin names for the flops in your synthesis library.
Similar scripts can be used to transform the PrimeTime SDC into an SDC suitable for tools that
understand a more limited syntax. For example to create an SDC suitable for CeltIC you might

deleteset_operating_conditions , set_wire_load_model , and
set_max_transition commands which cause a Warning in that tool.

SNUG San Jose 2009 20 Consistent Timing Constraints with PrimeTime

Converting SDC to Design Compiler Tcl constraints

#! lusr/bin/perl

this script hacks up a PrimeTime SDC so it can be used for RTL synthesis
the resulting script is Tcl, not SDC

#.

get the original SDC filename

$input_sdc = $ARGV[O];

#

H

read in the sdc

open (FILE, “$input_sdc”) or die “Could not open file $input_sdc : $\n";
while (<FILE>) {

add comments to header

if (/™ Created by PrimeTime write_sdc/) {
print;
print “# modified to Tcl for DC synthesis by fix_sdc_for_dc.pl\n”;
next;

}

comment out SDC commands that don’t work in DC Tcl
if (/set sdc_version/) {
SIN#
}
if (/*set_operating_conditions/) {
sIN#
}

skip case analysis that uses flop output pins
next if (/set_case_analysis.*\[get_pins .*\/(Q|QN)(}|)/);

skip multicycle and false paths that use certain flop or latch pins
next if (/set_(false|multicycle)_path.*\[get_pins .*/(G|GN|RN|SN|SI|SE|E)(}|)));

fix multicycle and false paths that use flop or latch pins

because the flops haven't been compiled yet, the pins don’t exist

so change the pin names to cell names

if (/set_(false|multicycle)_path.*\[get_pins .*/(CK|CKN|D|Q|QN)(}|)/ {
need to convert the get_pins to get_cells,
but leave alone get_pins that are not flops
s/get_pins([M]]+V(CK|CKN|D|Q|QN)(}))/get_cells\1/g;
need to convert the pin names to cell names
s/(\S+)V(CK|CKN|D|Q|QN)(}|)A1\3/g;

}

print;
}

close(FILE);

SNUG San Jose 2009 21 Consistent Timing Constraints with PrimeTime

Extracting clock latencies

A.7 Extracting clock latencies

In some cases the usevafite_sdc , even with postprocessing, is not sufficient. For example
consider the problem of clock latency. Early in the flow we must use ideal clock latencies, and
clock skew is modeled using clock uncertainty. We would like an automated way to update these
values once the actual propagated clock timings become known. Then as we continue iterating
our flow, the tools early in the flow (e.g., Design Compiler) will use ideal clock latencies that
accurately reflect the postroute physical results.

Here is a portion of the automatically generated clock latency Tcl script. Note that this does not
contain Tcl commands, rather it defines variables. Each propagated clock in the design has a set of
these variables defining the clock timing.

HHHHHHEHHE cpUA_clk

set clock_source_latency(cpuA_clk:SLOW:early:rise) 1.987
set clock_source_latency(cpuA_clk:SLOW:late:rise) 2.305
set clock_source_latency(cpuA_clk:SLOW:early:fall) 1.959
set clock_source_latency(cpuA_clk:SLOW:late:fall) 2.272
set clock_network_latency(cpuA_clk:SLOW:early:rise) 1.228
set clock_network_latency(cpuA_clk:SLOW:late:rise) 1.405
set clock_network_latency(cpuA_clk:SLOW:early:fall) 1.257
set clock_network_latency(cpuA_clk:SLOW:late:fall) 1.438
set clock_global_skew(cpuA_clk:SLOW) 0.187

Our Design Compiler synthesis script (or PrimeTime analysis script) can source these clock
latency definition files:

source -echo -verbose ${SPEC_DIR}mychip_clock_latencies.SLOW.tcl
source -echo -verbose ${SPEC_DIR}mychip_clock_latencies.TYP.tcl
source -echo -verbose ${SPEC_DIR}/mychip_clock_latencies.FAST.tcl

There may be postroute clock objects which do not exist in the simpler synthesis constraints.
Because these are variable definitions rather than Design Compiler Tcl (or SDC) commands, we
only use the latency variables that correspond to clocks that exist. The others are defined but not
used.

Not only Design Compiler, but PrimeTime also will use these latency definitions for full-chip
timing analysis early in the flow.

SNUG San Jose 2009 22 Consistent Timing Constraints with PrimeTime

Extracting clock latencies

Now set the ideal latencies and uncertainties for every existing clock. Note the analysis CORNER
is defined as part of the variable index. Thus we have latency and uncertainty values for all
corners available, which allows best-case/worst-case analysis if necessary.

specify clock latency and uncertainty
foreach_in_collection the_clock [get_clocks] {
set clock_name [get_object_name $the_clock]

source latency
if [info exists clock_source_latency($clock_name:$CORNER:early:rise)] {
set_clock_latency -min -early -rise -source \
$clock_source_latency($clock_name:$CORNER:early:rise) $the_clock
set_clock_latency -min -late -rise -source \
$clock_source_latency($clock_name:$CORNER:late:rise) $the_clock
set_clock_latency -min -early -fall -source \
$clock_source_latency($clock_name:$CORNER:early:fall) $the_clock
set_clock_latency -min -late -fall -source \
$clock_source_latency($clock_name:$CORNER:late:fall) $the_clock
set_clock_latency -max -early -rise -source \
$clock_source_latency($clock_name:$CORNER:early:rise) $the_clock
set_clock_latency -max -late -rise -source \
$clock_source_latency($clock_name:$CORNER:late:rise) $the_clock
set_clock_latency -max -early -fall -source \
$clock_source_latency($clock_name:$CORNER:early:fall) $the_clock
set_clock_latency -max -late -fall -source \
$clock_source_latency($clock_name:$CORNER:late:fall) $the_clock

}

network latency
if [info exists clock_network_latency($clock_name:$CORNER:early:rise)] {
set_clock_latency -min -rise \
$clock_network_latency($clock_name:$CORNER:early:rise) $the_clock
set_clock_latency -max -rise \
$clock_network_latency($clock_name:$CORNER:late:rise) $the_clock
set_clock_latency -min -fall \
$clock_network_latency($clock_name:$CORNER:early:fall) $the_clock
set_clock_latency -max -fall \
$clock_network_latency($clock_name:$CORNER:late:fall) $the_clock

}

simple clock uncertainty
set_clock_uncertainty -setup [expr $setup_clock_extra_margin \
+ $setup_clock_OCV_margin \
+ $clock_local_skew($clock_name:$3CORNER) \
+ $clock_additional_setup_uncertainty($clock_name)] \
$the_clock

set_clock_uncertainty -hold [expr $hold_clock_extra_margin \
+ $hold_clock_OCV_margin \
+ $clock_local_skew($clock_name:$3CORNER) \
+ $clock_additional_hold_uncertainty($clock_name)] \
$the_clock

SNUG San Jose 2009 23 Consistent Timing Constraints with PrimeTime

Extracting clock latencies

Here is the actual PrimeTime Tcl script which is run on the postroute full-chip design. All real
propagated clocks will be analyzed and reported.

B R R R R R R P R R B R R B R R R R R R R T

issue warning if skew exceeds this value

set max_skew 0.600

issue warning if early/late latencies differ by more than this percentage
set max_source_latency_diff_pct 15

set max_network_latency_diff_pct 15

HHHHHHHHHH R R
define proc to warn about excessive variation

proc check_percent_difference {a b limit msg} {

if {[expr $a > $b]} {
set max $a
set min $b
}else {
set min $a
set max $b

}

if {$min == 0} {
return

}
set percent [expr 100 * ($max - $min)/$min]

if {$percent > $limit} {
echo -n “Warning: $msg differ by [format {%.1f} $percent]% “
echo “which exceeds the limit of ${limit}%”

}

return

}

FEFH T R T T S T R
open the file for writing

set script_name ${REPORT_DIR}/clock_latencies.tcl
set channel [open $script_name w]

output to file

puts $channel {HiHHEHHHHHEHE I R)
puts $channel “# Written by write_clock_latencies.tcl”

puts $channel “# Running on [info hostname] with pid [pid] by [getenv USER]”

puts $channel “# [date]”

puts $channel “#”

puts $channel “# variable settings from analysis”

puts $channel “#”

puts $channel “# netlist_file $netlist_file”

puts $channel “# parasitics_file $parasitics_file”
puts $channel “# CORNER $CORNER”
puts $channel “# MODE $MODE”

puts $channel “# FIX_HFN $FIX_HFN"

SNUG San Jose 2009 24 Consistent Timing Constraints with PrimeTime

Extracting clock latencies

puts $channel “# HFN_FANOUT_THRESHOLD $HFN_FANOUT_THRESHOLD”

puts $channel “# PROPAGATE_CLOCKS $PROPAGATE_CLOCKS”

puts $channel “# ENABLE_SI $ENABLE_SI”

puts $channel {HiHHEHHHHEHEHEH I T

loop over all the real propagated clocks

foreach_in_collection the_clock \
[get_clocks -filter “defined(sources) && propagated_clock==true"] {

set clock_name [get_object_name $the_clock]

echo “##### Extracting latencies for clock $clock_name”
echo

puts $channel “####H## Sclock_name”
get the source latencies (if any)

set early_rise_source_latency \
[get_attribute -quiet \
[get_clocks $clock_name] clock_source_latency_early_rise_max]
set late_rise_source_latency \
[get_attribute -quiet \
[get_clocks $clock_name] clock_source_latency_late_rise_max]
set early_fall_source_latency \
[get_attribute -quiet \
[get_clocks $clock_name] clock_source_latency_early_fall_max]
set late_fall_source_latency \
[get_attribute -quiet \
[get_clocks $clock_name] clock_source_latency_late_fall_max]

if [string match {} $early_rise_source_latency] {
set early_rise_source_latency O ;

}

if [string match {} $late_rise_source_latency] {
set late_rise_source_latency O ;

}

if [string match {} $early_fall_source_latency] {
set early_fall_source_latency O ;

if [string match {} $late_fall_source_latency] {
set late_fall_source_latency O ;

}

dump status to log file

echo “source latency:”

echo iy
echo “ rise early $early_rise_source_latency”
echo “ late $late_rise_source_latency”

check_percent_difference \
$early_rise_source_latency \
$late_rise_source_latency \
$max_source_latency_diff_pct\
“early rise and late rise source latency”

echo ek
echo “ fall early $early_fall_source_latency”
echo “ late $late_fall_source_latency”

SNUG San Jose 2009 25 Consistent Timing Constraints with PrimeTime

Extracting clock latencies

check_percent_difference \
$early_fall_source_latency \
$late_fall_source_latency \
$max_source_latency_diff_pct\
“early fall and late fall source latency”
echo ™

print source latency values to Tcl script

puts $channel “set clock_source_latency($clock_name:$CORNER:early:rise) [format
{%.3f} $early_rise_source_latency]”

puts $channel “set clock_source_latency($clock_name:$CORNER:late:rise) [format
{%.3f} $late_rise_source_latency]”

puts $channel “set clock_source_latency($clock_name:$3CORNER:early:fall) [format
{%.3f} $early_fall_source_latency]”

puts $channel “set clock_source_latency($clock_name:$CORNER:late:fall) [format
{%.3f} $late_fall_source_latency]”

get the total latency

set early_rise_time_list {}
set early_fall_time_list {}
set late_rise_time_list {}
set late_fall_time_list {}

foreach_in_collection clk_pin \
[all_registers -edge_triggered -clock_pins -clock $clock_name] {

earliest clock latency is setup path capture clock
set the_early_rise_time \
[get_attribute -quiet \
[get_timing_path \
-group $clock_name \
-delay max \
-to [get_pins \
-filter “direction==in && is_data_pin==true” \
-of [get_cells -of $clk_pin]]] \
endpoint_clock_latency]
set the_early_fall_time $the_early rise_time
latest clock latency is hold path capture clock
set the_late_rise_time \
[get_attribute -quiet \
[get_timing_path \
-group $clock_name \
-delay min \
-to [get_pins \
-filter “direction==in && is_data_pin==true” \
-of [get_cells -of $clk_pin]]] \
endpoint_clock_latency]
set the_late_fall_time $the_late_rise_time

if [string match {} $the_early_rise_time] {
skip bogus ones
echo Information: no early rise arrival time for clock $clock_name on pin
[get_object_name $clk_pin]
}else {
subtract source latency to get network latency
set the_early_rise_time [expr $the_early_rise_time -

SNUG San Jose 2009 26 Consistent Timing Constraints with PrimeTime

Extracting clock latencies

$early_rise_source_latency]
lappend early_rise_time_list $the_early_rise_time

}

if [string match {} $the_early_fall_time] {
skip bogus ones
echo Information: no early fall arrival time for clock $clock_name on pin
[get_object_name $clk_pin]
}else {
subtract source latency to get network latency
set the_early_fall_time [expr $the_early_fall_time -
$early_fall_source_latency]
lappend early_fall_time_list $the_early_fall_time

}

if [string match {} $the_late_rise_time] {
skip bogus ones
echo Information: no late rise arrival time for clock $clock_name on pin
[get_object_name $clk_pin]
}else {
subtract source latency to get network latency
set the_late_rise_time [expr $the_late_rise_time -
$late_rise_source_latency]
lappend late_rise_time_list $the_late_rise_time

}

if [string match {} $the_late_fall_time] {
skip bogus ones
echo Information: no late fall arrival time for clock $clock_name on pin
[get_object_name $clk_pin]
}else {
subtract source latency to get network latency
set the_late_fall_time [expr $the_late_fall_time -

SNUG San Jose 2009 27 Consistent Timing Constraints with PrimeTime

Extracting clock latencies

$late_fall_source_latency]
lappend late_fall_time_list $the_late_fall_time
}
}

sort the lists

set early_rise_time_list [Isort -real $early_rise_time_list]
set early_fall_time_list [Isort -real $early_fall_time_list]
set late_rise_time_list [Isort -real $late_rise_time_list]
set late_fall_time_list [Isort -real $late_fall_time_list]

set number_of_early_rise_values [llength $early_rise_time_list]
set number_of_early_fall_values [llength $early_fall_time_list]
set number_of_late_rise_values [llength $late_rise_time_list]
set number_of_late_fall_values [llength $late_fall_time_list]

if {($number_of_early_rise_values == 0) || \
($number_of_early_fall_values ==0) || \
($number_of_late_rise_values == 0) || \
($number_of_late_fall_values == 0)} {
continue

}

get the max, median, min values

set late_rise_value(min) [lindex $late_rise_time_list 0]

set late_rise_value(5pct) [lindex $late_rise_time_list [expr
int(ceil($number_of_late_rise_values * 0.05))]]

set late_rise_value(median) [lindex $late_rise_time_list [expr
$number_of_late_rise_values / 2]]

set late_rise_value(max) [lindex $late_rise_time_list end]

set late_rise_value(skew) [expr $late_rise_value(max) - $late_rise_value(min)]

set late_rise_value(5-100_skew) [expr $late_rise_value(max) -
$late_rise_value(5pct)]

set late_fall_value(min) [lindex $late_fall_time_list 0]

set late_fall_value(5pct) [lindex $late_fall_time_list [expr
int(ceil($number_of_late_fall_values * 0.05))]]

set late_fall_value(median) [lindex $late_fall_time_list [expr
$number_of_late_fall_values / 2]]

set late_fall_value(max) [lindex $late_fall_time_list end]

set late_fall_value(skew) [expr $late_fall_value(max) - $late_fall_value(min)]

set late_fall_value(5-100_skew) [expr $late_fall_value(max) -
$late_fall_value(5pct)]

set early_rise_value(min) [lindex $early_rise_time_list 0]

set early_rise_value(5pct) [lindex $early_rise_time_list [expr
int(ceil($number_of_early_rise_values * 0.05))]]

set early_rise_value(median) [lindex $early_rise_time_list [expr
$number_of_early rise_values / 2]]

set early_rise_value(max) [lindex $early_rise_time_list end]

set early_rise_value(skew) [expr $early_rise_value(max) - $early_rise_value(min)]

set early_rise_value(5-100_skew) [expr $early_rise_value(max) -
$early_rise_value(5pct)]

set early_fall_value(min) [lindex $early_fall_time_list 0]
set early_fall_value(5pct) [lindex $early_fall_time_list [expr

SNUG San Jose 2009 28 Consistent Timing Constraints with PrimeTime

Extracting clock latencies

int(ceil($number_of_early_fall_values * 0.05))]]

set early_fall_value(median) [lindex $early_fall_time_list [expr
$number_of_early_fall_values / 2]]

set early_fall_value(max) [lindex $early_fall_time_list end]

set early_fall_value(skew) [expr $early_fall_value(max) - $early_fall_value(min)]

set early_fall_value(5-100_skew) [expr $early_fall_value(max) -
$early_fall_value(5pct)]

dump status to log file

echo “network latency:”

echo ™

echo “ rise early min ~ $early_rise_value(min)”

echo “ 5pct $early_rise_value(5pct)”

echo “ median $early rise_value(median)”

echo “ max S$early_rise_value(max)”

echo “ skew $early_rise_value(skew)”

echo “ 5-100_skew $early_rise_value(5-100_skew)”
echo “ #values $number_of_early_rise_values”

if {$early_rise_value(5-100_skew) > $max_skew} { echo “Warning: exceeded max_skew of
$max_skew” ; }

echo ™

echo “ late min $late_rise_value(min)”

echo “ 5pct $late_rise_value(5pct)”

echo “ median $late_rise_value(median)”

echo “ max $late_rise_value(max)”

echo “ skew $late_rise_value(skew)”

echo “ 5-100_skew $late_rise_value(5-100_skew)”
echo “ #values $number_of_late_rise_values”

if {$late_rise_value(5-100_skew) > $max_skew} { echo “Warning: exceeded max_skew of
$max_skew” ; }
check_percent_difference $early_rise_value(median) $late_rise_value(median)
$max_network_latency_diff_pct “early rise and late rise network latency”

echo ™

echo “ fall early min $early_fall_value(min)”

echo “ 5pct $early_fall_value(5pct)”

echo “ median $early_fall_value(median)”

echo “ max $early_fall_value(max)”

echo “ skew $early_fall_value(skew)”

echo “ 5-100_skew $early_fall_value(5-100_skew)”
echo “ #values $number_of_early_fall_values”

if {$early_fall_value(5-100_skew) > $max_skew} { echo “Warning: exceeded max_skew of
$max_skew” ; }

echo **

echo “ late min $late_fall_value(min)”

echo “ 5pct $late_fall_value(5pct)”

echo “ median $late_fall_value(median)”

echo “ max $late_fall_value(max)”

echo “ skew $late_fall_value(skew)”

echo 5-100_skew $late_fall_value(5-100_skew)”
echo “ #values $number_of_late_fall_values”

if {$late_fall_value(5-100_skew) > $max_skew} { echo “Warning: exceeded max_skew of
$max_skew” ; }
check_percent_difference $early_fall_value(median) $late_fall_value(median)

SNUG San Jose 2009 29 Consistent Timing Constraints with PrimeTime

Extracting clock latencies

$max_network_latency_diff_pct “early fall and late fall network latency”
echo “

print network latency values to Tcl script

puts $channel “set clock_network_latency($clock_name:$CORNER:early:rise) [format
{%.3f} $early_rise_value(median)]”

puts $channel “set clock_network_latency($clock_name:$CORNER:late:rise) [format
{%.3f} $late_rise_value(median)]”

puts $channel “set clock_network_latency($clock_name:$CORNER:early:fall) [format
{%.3f} $early_fall_value(median)]”

puts $channel “set clock_network_latency($clock_name:$CORNER:late:fall) [format
{%.3f} $late_fall_value(median)]”

print skew value to Tcl script

set global_skew [expr ($early_rise_value(5-100_skew) +\
$late_rise_value(5-100_skew) +\
$early_fall_value(5-100_skew) + \
$late_fall_value(5-100_skew)) \
/14.0]

if {$global_skew > $max_skew} { set global_skew $max_skew ; }

puts $channel “set clock_global_skew($clock_name:$CORNER) [format {%.3f}
$global_skew]"

}

close the file

puts $channel {#iH#HHHEH BB I I R R)

close $channel

HHAHHHHHHH R R R HH

all done

print_message_info

HHHHHHHH

This script runs very quickly, even on large designs. Also note it does not need to be run on every
iteration of the flow, but only when significant changes are made to the clock network. As the

design converges, these extracted latency numbers will stabilize.

SNUG San Jose 2009 30 Consistent Timing Constraints with PrimeTime

Extracting clock latencies

The script generates simple statistics for each clock. This provides early feedback that the clock
network has a reasonable distribution with small skew.

Extracting latencies for clock cpuA_clk
source latency:

rise early 1.987049
late 2.304699
Warning: early rise and late rise source latency differ by 16.0% which exceeds the
limit of 15%

fall early 1.958989
late 2.272815
Warning: early fall and late fall source latency differ by 16.0% which exceeds the
limit of 15%

network latency:

rise early min 1.123831
5pct 1.143644
median 1.228742
max 1.316696
skew 0.192388
5-100_skew 0.173052
#values 14493

late min 1.284190
5pct 1.308831
median 1.404956
max 1.508652
skew 0.224462
5-100_skew 0.199858
#values 14934

fall early min 1.152224
S5pct 1.172550
median 1.256856
max 1.345621
skew 0.192388
5-100_skew 0.173052
#values 14934

late min 1.316578
5pct 1.341182
median 1.437335
max 1.541031
skew 0.224462

5-100_skew 0.199858
#values 14934

SNUG San Jose 2009 31 Consistent Timing Constraints with PrimeTime

