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ABSTRACT

Wireload models are like the weather. Many people talk about them, but not many peopledo
anything about them! This paper will explore some of the myths and realities of wireload mo

• why wireload models are important, and whynobody understands them

• why your intuition is wrong

• why you shouldn’t trust your silicon vendor

• why floorplanning sometimes doesn’t matter

• why having an accurate wireload model is abad idea

A technique for measuring the quality of wireload models will be described. Real-world res
will be discussed. Cool graphics will be shown. A desperate plea for future work will be give
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1.0 Synthesis basics

The typical methodology or flow used with Design Compiler is shown in Figure 1.

Figure 1.  Typical Flow

The quality of the netlist is determined by:

• synthesis tool (vendor and version)

• technology library

• RTL code

• compile scripts and constraints

• wireload model

Much has been written on how to write better RTL code (“better” means the resulting netlis
smaller, faster, lower power, etc.). Also extensive work has been done on examining synthe
scripting styles and how to properly constrain your design. In contrast, very little has been 
about wireload models.

A wireload modelis what the synthesis tool uses to estimate wire characteristics (e.g. intercon
delay) in the absence of physical layout data. For a wire with a given fanout, the wireload m
specifies the capacitance, resistance, and area of the wire. (Herefanout is defined to be one less
than the total number of pins on the net.)

Although the synthesis tool has complete control over the netlist, the resulting timing is gre
affected by the physical layout. The wireload model is theonly information that the synthesis tool
has about the back-end place and route flow.

Design
Compiler

library
RTL
code

scripts &
constraints

wireload
model

netlist
SNUG ‘99 2 Resistance is Futile! Building Better Wireload Models



 a
 a

ent this
%
 that

case
s a
ulated.

e

2.0 Wireload model basics

ASIC vendors typically develop wireload models based on statistical information taken from
variety of example designs. For all the nets with a particular fanout, the number of nets with
given capacitance is plotted as a histogram. A single capacitance value is picked to repres
fanout value in the wireload model. If a very conservative wireload model is desired, the 90
decile might be picked (i.e. 90% of the nets in the sample have a capacitance smaller than
value).

Figure 2.  Example statistical distribution showing deciles

Figure 2 is an example histogram plot. The distribution typically has a very long tail; in this 
the 95% net has a capacitance of 0.358 pF while the 100% net (i.e. the worst-case net) ha
capacitance of 2.130 pF. Sometimes these long tails are trimmed before the deciles are calc
A smoothing function is applied to guarantee that capacitance increases monotonically with
fanout.

Similar statistics are gathered for resistance and net area.

Usually the vendor supplies a family of wireload models, each to be used for a different siz
design. This is calledarea-based wireload selection.
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Example wireload models from three different vendors are shown in Figure 3. All three mod
are for a 20k-gate module size in a 0.25µ process. Two theoretical curves are also shown, one
from Lee Bradshaw [1] and the other from the Berkeley Advanced Chip Performance Calcu
(BACPAC) [17]. Note that vendors B and C and the BACPAC model are all linear.

Figure 3.  Example wireload models

The curves are normalized such that a fanout of one has a normalized capacitance of one,
allowing easy comparison. An alternative normalization would be to divide all capacitances
the input capacitance of a typical 2-input NAND gate from each library. Interestingly, for the
three vendors, the normalized value for fanout of one would still be very close to one! In oth
words, in these 0.25µ processes, the wire capacitance for a fanout of one is about equal to th
input pin capacitance of a typical gate.

Bradshaw’s wireload model was based on actual design data and some theoretical modellin
by Kurt Baty [26][27].

Smith [11] gives an excellent overview of interconnect delay and the statistical nature of wire
models.

Much more information about wireload models (including example syntax) can be found in 
Synopsys Online Documentation [14][15][16].

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8 9 10 11 12

no
rm

al
iz

ed
 c

ap
ac

ita
nc

e

fanout

vendor A
vendor B
vendor C

Bradshaw model
BACPAC model
SNUG ‘99 4 Resistance is Futile! Building Better Wireload Models



 Over

ntions

and
ity.
hout

gle
d by
3.0 Conventional wisdom (myths)

There is much conventional wisdom about wireload models and how to properly use them.
the years some of this “wisdom” has been shown to be more myth than truth. Here is my
collection of wireload myths, with a brief discussion of each.

Myth #1: Select the wireload model based on the area of the block that will be placed and
routed as a unit

This is absolute dogma, repeated by virtually every paper, book, and users manual that me
wireload models [19]. However it isn’t necessarily true.

Mohsin [8] introduces a technique called “hierarchical estimated wire load (HEWL)” where
different wireload models are used at different levels of logical hierarchy within a single place
route block. The idea here is that the placer will keep logically-related cells in close proxim
Thus cells will be placed within an area that is reflective of the wireload model used, even wit
floorplanning.

Figure 4.  Statistical distribution of nets vs. capacitance for two levels of hierarchy from a single layout block

Statistical analysis seems to bear this out. Figure 4 shows two histograms taken from a sin
block that was placed and routed with no floorplanning. The “4k” curve includes nets enclose
all leaf modules with a size of 4k gates or less. The “200k” curve includes only top-level
interconnect nets at the 200k-gate module size, i.e. nets that are enclosed by the top-level
hierarchical module and that arenot enclosed by some lower level of hierarchy. Thus the
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allocation of nets to statistical population is identical to how Design Compiler allocates nets
wireload models using theenclosed wireload model mode [14]. Similar statistical results wer
reported by Smith [11].

It appears that larger blocks should have more pessimistic wireloads, however not shown i
figure is that the tail of the 4k distribution is very long, much longer than the tail of the 200k
curve. For very pessimistic wireloads (>90% decile) this technique may not work.

Myth #2: One wireload model per area is enough

Not necessarily. Following the analysis of Myth #1 above, these hierarchical modules migh
need different models, even though they are all the same size:

• 20k-gate random logic block

• top-level interconnect for five 4k-gate modules

• 20k-gate random logic block, that is part of a larger place and route block

• top-level interconnect for five 4k-gate modules, that is part of a larger place and route b

Alternatively, there is evidence that asingle wireload model can give good results, regardless o
area [3][24].

Myth #3: Wire resistance should be set to zero

Many vendors have resistance set to zero in their wireload models. The result is that
interconnect delay is zero.

This means that the interconnect model (e.g.best_case_tree , worst_case_tree ,
balanced_tree ) selected as part ofset_operating_conditions actually doesn’t have
any effect.

Note that wire capacitance still has an effect on cell delay and transition delay [15].

The typical excuse for zero resistance is “but our extraction tool only gives capacitance!”

Even if resistance is non-zero, many vendors still use the originalwire_load  library format
which forces resistance, capacitance, and area to be proportional. The newer
wire_load_table  format allows more flexibility and accuracy [15].

Myth #4: Wire area should be set to zero

Real wiresdo have area, and this can greatly impact your layout. If Design Compiler has a g
idea of wire area it can make better trade-offs during gate-level optimization.

Toshiba [7] reports that wire area is critical to get a routable netlist.
SNUG ‘99 6 Resistance is Futile! Building Better Wireload Models
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Myth #5: You can always trust the vendor wireload model

Not necessarily. Even if your vendor avoids Myth #1 through Myth #4, you might still have
problems because:

• your design is larger than the examples that the vendor used to derive their wireload mo

• your netlist characteristics are different (more nets, more routing congestion, more IOs)

• your routing blocks have a different aspect ratio

• your design flow may be different. McDougal et al. [6] reported that an optimistic wireloa
model gave best results for a flow including IPO, while a pessimistic model gave best re
with no IPO.

Keep in mind that your vendor may have a very different agenda from you. The vendor ten
want conservative wireload models so they can easily meet pre-route timing estimates. The
customer wants more optimistic wireloads with very little margin. Some vendors are attemp
to make the predictions of the wireload model as accurate as possible, leaving the inclusio
margin to the designer’s judgement.

Myth #6: Custom wireload models are always better

This is almost as pervasive as Myth #1, and it is just as suspect.

What is commonly called a custom wireload model is more precisely called adesign-specific
wireload model. The idea is to first do a trial place and route of your own design, and then use
resulting statistics to generate new wireload models that are specific to your design. In theor
will give better results. However Joshi [9] found that some blocks got worse results from the
“custom” wireload models, compared to the “custom” models from another block.

Several things may go wrong:

• you might get a small statistical sample from your one design, rather than the many des
used by your vendor

• you typically generate the wireloads based on an early netlist, and the netlist characteri
may change as the design is refined (e.g. area gets bigger, number of nets changes)

• the model creation tool may not use a methodology you agree with (especially if you wa
use different models within a single place and route block)

• your flow may requireuniquify  so that each instance gets its own wireload model

An alternative is to create adesign-specific wireload library which replaces the vendor wire-
load library, but where the individual models are not tied directly to floorplan or layout bloc
This allows the compile flow to remain unchanged.

The generation and use of design-specific wireload models is discussed by Bradshaw [1],
Rusu [4], and McDougal [6].
SNUG ‘99 7 Resistance is Futile! Building Better Wireload Models
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Myth #7: Wireload model should agree with post-route statistics

This is the most heinous of all myths. It is the underlying force behind Myth #6.

The purpose of a wireload model isnot to agree with post-route net statistics.

Rather, the purpose of a wireload model is to accurately predict post-route timing.

The actual shape of the model doesn’t really matter. How it is generated doesn’t really matte
that matters is that the modelaccurately predicts post-route timing with appropriate margins.

4.0 Measuring the accuracy of a wireload model

Several techniques have been presented to measure the accuracy of wireload models, by
comparing the predicted pre-route timing with actual post-route timing.

The timing information for a design can be generated from the top of the design hierarchy w
the following dc_shell commands

set_false_path -from all_inputs()
set_false_path -to   all_outputs()
report_timing -nosplit -path end

The resulting report gives the path delay, required path delay, and slack for each endpoint 
design:

****************************************
Report : timing
        -path end
        -delay max
Design : merced
Version: 1998.02-2
Date   : Mon Feb  1 16:02:08 1999
****************************************

Operating Conditions: WORST_TREE   Library: P858
Wire Loading Model Mode: enclosed

Design           Wire Loading Model      Library
------------------------------------------------
merced                 10M               mylib_v1.3
x86                    1M                mylib_v1.3
bus_int                100k              mylib_v1.3

Endpoint                         Path Delay     Path Required     Slack
------------------------------------------------------------------------
core/cache_ctrl/regs/u_ff_2/D (FF1) 10.59 r           9.69        -0.90
regs/ctrl/be_reg_ff/D (FF2)         11.23 f           9.67        -1.56
SNUG ‘99 8 Resistance is Futile! Building Better Wireload Models
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Because of theset_false_path commands only flop-to-flop paths are reported, thus avoidi
any inaccuracies due to unrealistic input and output delays.

Using such data, Joshi et al. from Texas Instruments [9] compared the pre- and post-route
for each endpoint in a design. Subtracting the pre-route predicted slack from the post-route
slack gives a difference slack value ordelta slack. Plotting the number of paths with each such
value creates adelta slack histogram plot. Figure 5 shows an example.

Figure 5.  Delta slack histogram plot

Plots with a peak around zero show a good correlation to the predicted values. Plots with a
majority of paths to the right of zero indicate that the predicted values (and thus the wireloa
models) are pessimistic, while paths to the left of zero indicate optimistic predictions.
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Toshiba [7] added another dimension by plotting the pre-route predicted path delay versus
post-route actual path delay. Each data point represents a single path in the design. Figure 6
such apath delay scatter plot.

Figure 6.  Path delay scatter plot

The diagonal line indicates perfect agreement between pre- and post-route delay. Points to t
of the diagonal represent paths whose predicted values were pessimistic, while points to the
represent optimistic predictions. Note that if all the points are projected onto a line perpend
to the diagonal, the result is the delta slack histogram plot of Figure 5.

This plot is useful for showing rough correlation, but has several problems. Comparing tota
delay isn’t very interesting, because a mispredicted path that has lots of slack is not the cri
path. Slack can be used for comparison, however slack alone is not adequate, because wi
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multifrequency designs (due to multiple clocks or multicycle paths) there are different flop-to-
path requirements. For example a slack of -2ns on a 10ns path may be more important than
slack on a 40ns path. A much better measure is theslack ratio defined for a given path as

.

Plotting the pre-route predicted slack ratio versus the post-route actual slack ratio gives a
slack ratio scatter plot. Figure 7 gives an example using the same data from Figure 6.
Lucent Technologies [24] introduced slack ratios and slack ratio plots and has used them fo
several years.

Figure 7.  Slack ratio scatter plot for 42,052 paths

The diagonal line indicates perfect agreement between pre- and post-route delay. Points to t
of the diagonal represent paths whose predicted values were pessimistic, while points to the
represent optimistic predictions.
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Points to the left of the axis are paths that were predicted to not meet their required timing

have negative pre-route slack). Points below the  axis are paths that have negative post-r
slack and therefore actually do not meet their required timing.

Figure 8 shows the same design after in-place optimization (IPO). Note that the points belo
 axis have been “swept up” to the axis, and now all paths meet their required timing.

Figure 8.  Slack ratio scatter plot showing IPO results

y

x

x

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

po
st

ro
ut

e 
w

ith
 IP

O
 s

la
ck

 r
at

io

predicted slack ratio
SNUG ‘99 12 Resistance is Futile! Building Better Wireload Models



s the
t been
ent”
Figure 9 shows a different view of the same data. By plotting the post-route slack ratios versu
post-IPO slack ratios we can see which paths are affected by the IPO. Most paths have no
changed significantly, but the paths that were missing timing (below the axis) have been “b
up to the axis. This is called a “hockey stick” plot [24].

Figure 9.  Slack ratio scatter plot showing IPO results
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Yet another way to display slack ratios is to plot the cumulative number of paths that have l
than a given slack ratio. This is aslack ratio percentage plotand an example is given in Figure 10
This shows the same data as Figure 9. Note that after IPO there are no paths with negative
ratios. The entire bottom part of the curve has shifted to the right showing critical paths bei
fixed. Slower paths with larger slack were mostly unaffected.

Figure 10.  Slack ratio percentage plot showing IPO results

5.0 Suggestions

Ask your vendor how their wireload models are generated. What methodology do they use?
sorts of example designs? Do their models show good correlation between pre-route predi
delays, and post-route actual delays? What sort of margin do they have? Ask your vendor 
slack ratio plots. Do them yourself for your own designs.

When generating your own custom wireload libraries be sure and use a unique library nam
perhaps incorporating a date or revision number of some sort (e.g.mylib_11_4_b ). The top of
your timing reports will clearly show which version of your wireloads are being used. Note t
may cause problems if you usewrite_script  because you will get lines such as

  set_wire_load “100k” -library “mylib_11_4_b” …

throughout your script, which will cause many errors when you change the library names.
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If you wish to create your own design-specific wireload models or libraries, plan on at least t
layouts: the first using the vendor default wireloads, the second using your new custom wirel
and a third that fixes up the wireloads that broke things on the second pass. For best resul
trial should use identical RTL code, scripts, and constraints. The only change should be the
wireload model. Generating these layouts will take some time. Your vendor may not want to
Your manager may not want to give you the time.

Make sure your models increase monotonically with fanout. If you are using automatic area-b
wireload selection then your models must be monotonic with area as well.

It is difficult for a wireload model to accurately model nets within a design that are connected
hard macro (such as a RAM). It is better to keep all hard macros in a separate level of hier
that is only interconnect. This allows the macro port nets to be forward-annotated with
set_load .

6.0 Future work

How sensitive is Design Compiler to variations in wireload models? If the capacitance value
fanout is changed by 1% will the netlist be different? What about 0.1%? 0.01%?

Use Howard Landman’s techniques [12] to plot the results of the entire synthesis and layout
As the wireload changes, is Design Compiler’s behavior stable or chaotic? What about the
end tools?

The example slack ratio plots used all paths in the entire design. If different wireload models
used at different levels of the hierarchy, how can we measure the accuracy of each model?
technique may be to report flop-to-flop paths that are contained entirely within the particular
of hierarchy.

What sort of wireload models should be used during in-place optimization (IPO)? Perhaps 
a situation where the wireload model should agree exactly with post-route statistics. Does 
model still need to be monotonic?

Typically all nets are treated equally when gathering post-route statistics. What happens if ne
weighted by whether or not they are on the critical path? Nets from paths with smaller slac
would be given more weight in generating the statistical histograms. How does this change
shape and accuracy of the resulting wireloads?

Following the work of Baty and Bradshaw, generate simulated wireload statistics. Assume 
square block of length on a side. To model a net with fanout of , randomly place po
in the block. Approximate the length of the minimum rectilinear Steiner tree that connects al
points (e.g. by calculating the half-perimeter measure or complete-graph measure [11]). Pl
resulting histograms and calculate the deciles. What happens if you change the aspect ratio
block? For a given decile, is there a closed-form solution for the fanout vs length curve? Ho
these theoretical statistical results compare to actual data from real designs? How is this s
model different from a real place and route tool?

L n n 1+
SNUG ‘99 15 Resistance is Futile! Building Better Wireload Models
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7.0 Conclusions

Back in 1994, an LSI Logic presentation stated that “Wiring is becoming THE MAJOR FACT

for the overall delay in Submicron Technologies.”1[2] It is clear that very soon the statistical
nature of interconnect delay will overwhelm even the most careful wireload models. Wireloa
models will become obsolete. Such a simple model of interconnect delay is not sufficient.
Accurate modelling of actual net delay will be necessary.

The current flow in Design Compiler is

1. Logic-level optimization
2. Map to technology
3. Gate-level optimization

Only step 3. requires the use of interconnect delay modelling. Eventually this flow must com
placement and synthesis [21][23] as follows:

1. Logic-level optimization
2. Map to technologyand initial placement
3. Gate-level optimizationand placement optimization

Currently the gate-level optimization step takes up the majority of synthesis runtime, and a
placement will make it even longer. However much of the gate-level optimization may no lo
be necessary, since the synthesis tool will not need to improve parts of the netlist that are p
optimally. Routing is not necessary; with accurate placement the interconnect delay can be
estimated with sufficient accuracy.

If full placement is too difficult then perhaps only the critical paths need to be placed in detail,
other cells can be given a rougher placement. Perhaps a relative placement can be done for
path cells, rather than an absolute placement. Some FPGA synthesis tools do this today [2

Note this new step 3. is very similar to the existing location-based optimization (LBO) supp
by Floorplan Manager with thereoptimize_design -in_place  command [13][16].

1. Emphasis in the original. Note the buzzword “deep submicron” had not been invented!
SNUG ‘99 16 Resistance is Futile! Building Better Wireload Models
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